Functional & Integrative Genomics

, Volume 14, Issue 3, pp 531–543 | Cite as

C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses

  • Mehanathan Muthamilarasan
  • Venkata Suresh Bonthala
  • Awdhesh Kumar Mishra
  • Rohit Khandelwal
  • Yusuf Khan
  • Riti Roy
  • Manoj PrasadEmail author
Original Paper


C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I–V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.


Foxtail millet (Setaria italicaC2H2 type of zinc finger transcription factors Genome-wide Expression profiling Phylogeny Physical map Comparative mapping 



This work was financially supported by the core grant of National Institute of Plant Genome Research (NIPGR), New Delhi, India. Mr. Mehanathan Muthamilarasan and Mr. Awdhesh Kumar Mishra acknowledge the awards of Research Fellowship from University Grants Commission and Council of Scientific and Industrial Research, New Delhi, India, respectively. The authors also thank Mr. Subodh Verma, NIPGR for his timely assistance.

Supplementary material

10142_2014_383_MOESM1_ESM.pdf (153 kb)
Supplementary Figure S1 Intron-exon positions of 124 C2H2-type of zinc finger protein encoding genes of foxtail millet. Exons and introns are represented by green boxes and black lines, respectively. (PDF 153 kb)
10142_2014_383_Fig9_ESM.gif (275 kb)
Supplementary Figure S2

Distribution of C2H2-type of zinc finger protein in sequenced plant genomes. The data was retrieved from Plant Transcription Factor Database ( (GIF 274 kb)

10142_2014_383_MOESM2_ESM.tif (384 kb)
High resolution image (TIFF 383 kb)
10142_2014_383_MOESM3_ESM.doc (32 kb)
Supplementary Table S1 Details of primers used for quantitative real-time PCR. (DOC 32 kb)
10142_2014_383_MOESM4_ESM.xls (52 kb)
Supplementary Table S2 Characteristic features of 124 C2H2-type of zinc finger protein encoding genes in foxtail millet. (XLS 52 kb)
10142_2014_383_MOESM5_ESM.xls (58 kb)
Supplementary Table S3 Summary of functional domains present in 124 SiC2H2 proteins revealed through PROSITE and InterProScan. (XLS 58 kb)
10142_2014_383_MOESM6_ESM.xls (26 kb)
Supplementary Table S4 List of predicted miRNAs targeting SiC2H2 transcripts (Setaria italica miRNAs are given in bold). (XLS 26 kb)
10142_2014_383_MOESM7_ESM.xls (45 kb)
Supplementary Table S5 Details of SiC2H2 transcription factor-based markers. (XLS 45 kb)
10142_2014_383_MOESM8_ESM.xls (38 kb)
Supplementary Table S6 Blast2GO annotation details of SiC2H2 protein sequences. (XLS 37 kb)
10142_2014_383_MOESM9_ESM.xls (1008 kb)
Supplementary Table S7 Summary of cis-acting regulatory elements present in the upstream sequences of all the 124 C2H2-type of zinc finger proteins. (XLS 1008 kb)
10142_2014_383_MOESM10_ESM.xls (27 kb)
Supplementary Table S8 The Ka/Ks ratios and estimated divergence time for orthologous SiC2H2 proteins between foxtail millet, sorghum, maize and rice. (XLS 27 kb)


  1. Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK (2007) Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467–485PubMedCrossRefGoogle Scholar
  2. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561PubMedCrossRefGoogle Scholar
  3. Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez J-C, Frutiger S, Hochstrasser DF (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031PubMedCrossRefGoogle Scholar
  4. Cochrane G, Alako B, Amid C, Bower L, Cerdeño-Tárraga A, Cleland I, Gibson R, Goodgame N, Jang M, Kay S, Leinonen R, Lin X, Lopez R, McWilliam H, Oisel A, Pakseresht N, Pallreddy S, Park Y, Plaister S, Radhakrishnan R, Rivière S, Rossello M, Senf A, Silvester N, Smirnov D, Ten Hoopen P, Toribio A, Vaughan D, Zalunin V (2013) Facing growth in the European Nucleotide Archive. Nucleic Acids Res 41:D30–35PubMedCentralPubMedCrossRefGoogle Scholar
  5. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedCrossRefGoogle Scholar
  6. Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141PubMedCentralPubMedCrossRefGoogle Scholar
  7. Du D, Zhang Q, Cheng T, Pan H, Yang W, Sun L (2012) Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 40:1937–1946PubMedCrossRefGoogle Scholar
  8. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763PubMedCrossRefGoogle Scholar
  9. Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gourcilleau D, Lenne C, Armenise C, Moulia B, Julien JL, Bronner G, Leblanc-Fournier N (2011) Phylogenetic study of plant Q-type C2H2 zinc finger proteins and expression analysis of poplar genes in response to osmotic, cold and mechanical stresses. DNA Res 18:77–92PubMedCentralPubMedCrossRefGoogle Scholar
  11. Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026PubMedCrossRefGoogle Scholar
  12. Gupta S, Kumari K, Muthamilarasan M, Parida SK, Prasad M (2014) Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Rep. doi: 10.1007/s00299-014-1564-0 Google Scholar
  13. Jain M, Khurana P, Tyagi AK, Khurana JP (2008) Genome-wide analysis of intronless genes in rice and Arabidopsis. Funct Integr Genomics 8:69–78PubMedCrossRefGoogle Scholar
  14. Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961PubMedCrossRefGoogle Scholar
  15. Khan Y, Yadav A, Suresh BV, Muthamilarasan M, Yadav CB, Prasad M (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-014-0480-x Google Scholar
  16. Kiełbowicz-Matuk A (2011) Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci 186:78–85Google Scholar
  17. Kodaira KS, Qin F, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol 157:742–756PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kumar K, Muthamilarasan M, Prasad M (2013) Reference genes for quantitative Real-time PCR analysis in the model plant foxtail millet (Setaria italica L.) subjected to abiotic stress conditions. Plant Cell Tissue Organ Cult 115:13–22CrossRefGoogle Scholar
  19. Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Chattopadhyay D, Prasad M (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS ONE 8:e67742PubMedCentralPubMedCrossRefGoogle Scholar
  20. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedCentralPubMedCrossRefGoogle Scholar
  21. Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343PubMedCrossRefGoogle Scholar
  22. Lecharny A, Boudet N, Gy I, Aubourg S, Kreis M (2003) Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J Struct Funct Genom 3:111–116CrossRefGoogle Scholar
  23. Longeman J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 163:16–20CrossRefGoogle Scholar
  24. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155PubMedCrossRefGoogle Scholar
  25. Mishra AK, Muthamilarasan M, Khan Y, Parida SK, Prasad M (2014) Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PLoS ONE 9:e86852PubMedCentralPubMedCrossRefGoogle Scholar
  26. Muthamilarasan M, Theriappan P, Prasad M (2013) Recent advances in crop genomics for ensuring food security. Curr Sci 105:155–158Google Scholar
  27. Muthamilarasan M, Venkata Suresh B, Pandey G, Kumari K, Parida SK, Prasad M (2014) Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 21:41–52PubMedCentralPubMedCrossRefGoogle Scholar
  28. Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207PubMedCentralPubMedCrossRefGoogle Scholar
  29. Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LG, Rensing SA, Kersten B, Mueller-Roeber B (2009) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827PubMedCentralPubMedCrossRefGoogle Scholar
  30. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381PubMedCrossRefGoogle Scholar
  31. Puranik S, Sahu PP, Mandal SN BVS, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS ONE 8:e64594PubMedCentralPubMedCrossRefGoogle Scholar
  32. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378PubMedGoogle Scholar
  33. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193PubMedCrossRefGoogle Scholar
  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  35. Shiu S-H, Bleecker AB (2003) Expansion of the Receptor-Like Kinase/Pelle Gene Family and Receptor-Like Proteins in Arabidopsis. Plant Physiol 132:530–543PubMedCrossRefGoogle Scholar
  36. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41:D344–D347PubMedCentralPubMedCrossRefGoogle Scholar
  37. Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818PubMedCentralPubMedCrossRefGoogle Scholar
  38. Suresh BV, Muthamilarasan M, Misra G, Prasad M (2013) FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS ONE 8:e71418CrossRefGoogle Scholar
  39. Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–W612PubMedCentralPubMedCrossRefGoogle Scholar
  40. Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39:1073–1078PubMedCrossRefGoogle Scholar
  41. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  42. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488PubMedCrossRefGoogle Scholar
  43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  44. Tian ZD, Zhang Y, Liu J, Xie CH (2010) Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biol 12:689–697PubMedCrossRefGoogle Scholar
  45. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  46. Wang Y, Dou D, Wang X, Li A, Sheng Y, Hua C, Cheng B, Chen X, Zheng X, Wang Y (2009) The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae. Microb Pathog 47:78–86PubMedCrossRefGoogle Scholar
  47. Wang N, Zheng Y, Xin H, Fang L, Li S (2013) Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep 32:61–75PubMedCrossRefGoogle Scholar
  48. Xiao H, Tang J, Li Y, Wang W, Li X, Jin L, Xie R, Luo H, Zhao X, Meng Z, He G, Zhu L (2009) STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J 59:789–801PubMedCrossRefGoogle Scholar
  49. Yadav CB, Muthamilarasan M, Pandey G, Prasad M (2014) Identification, characterization and expression profiling of Dicer-like. Argonaute and RNA-dependent RNA polymerase gene families in foxtail millet. Plant Mol Biol Report. doi: 10.1007/s11105-014-0736-y Google Scholar
  50. Yang Z, Gu S, Wang X, Li W, Tang Z, Xu C (2008) Molecular evolution of the cpp-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. J Mol Evol 67:266–277PubMedCrossRefGoogle Scholar
  51. Yi F, Xie S, Liu Y, Qi X, Yu J (2014) Genome-wide characterization of microRNA in foxtail millet (Setaria italica). BMC Plant Biol 13:212CrossRefGoogle Scholar
  52. Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848PubMedCrossRefGoogle Scholar
  53. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential Nature. Biotech 30:549–554Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mehanathan Muthamilarasan
    • 1
  • Venkata Suresh Bonthala
    • 1
  • Awdhesh Kumar Mishra
    • 1
  • Rohit Khandelwal
    • 1
  • Yusuf Khan
    • 1
  • Riti Roy
    • 1
  • Manoj Prasad
    • 1
    Email author
  1. 1.National Institute of Plant Genome Research (NIPGR)New DelhiIndia

Personalised recommendations