Advertisement

Functional & Integrative Genomics

, Volume 12, Issue 1, pp 11–23 | Cite as

Prediction of biological functions of Shewanella-like protein phosphatases (Shelphs) across different domains of life

  • Mikhail A. KutuzovEmail author
  • Alexandra V. AndreevaEmail author
Review

Abstract

PPP protein phosphatases are an important enzyme family involved in a variety of aspects of cellular signalling and metabolism. PPPs are ubiquitous in eukaryotes, and are also present in many bacteria. Canonical eukaryotic PPP phosphotases are represented by five major subfamilies (PP1, PP2A, calcineurin, PP5 and PPEF/PP7). We previously reported that three “bacterial-like” PPP groups span the prokaryote–eukaryote boundary, including “Shewanella-like” phosphatases (Shelphs), which are in the focus of this study. Here we predict possible biological functions and functional partners of Shelphs by examining composition of bacterial operons and expression data for eukaryotes available in public databases. In Arabidopsis thaliana, the predicted possible roles include light-dependent regulation of chloroplast functions, signalling between the nucleus and the chloroplast, and defence responses. In Plasmodium falciparum, Shelphs are predicted to be associated with host cell invasion. One isoform has been located in the apical complex, essential for the interaction with the host cell. This makes P. falciparum Shelphs obvious potential candidates for therapeutic targets. Shelphs are also present in bacteria that constitute a considerable proportion of symbiotic microflora in humans. The predicted involvement of bacterial Shelphs in sensing and import of nutrients and extrusion of toxins may be relevant to the links between physiology of humans and our symbionts. Thus, despite the absence of Shelphs in animals, including humans, they may have a direct relationship to human health. Some predicted biological processes and potential functional partners of Shelphs are common between different bacterial and/or eukaryotic lineages, suggesting evolutionary conservation of some Shelph regulatory modules.

Keywords

ABC transporters Circadian clock Peroxisome Photosynthesis Sigma factors Translocon 

Notes

Acknowledgements

The authors are indebted to all researchers who have deposited their primary data into open access repositories, and who have made their software freely available. This work would have been impossible without these contributions. We are also grateful to Jonathan Goldberg for critical reading of the manuscript and valuable comments.

Supplementary material

10142_2011_254_MOESM1_ESM.xls (41 kb)
Supplementary Table 1 (XLS 41 kb)
10142_2011_254_MOESM2_ESM.xls (31 kb)
Supplementary Table 2 (XLS 31 kb)
10142_2011_254_MOESM3_ESM.xls (40 kb)
Supplementary Table 3 (XLS 40 kb)
10142_2011_254_MOESM4_ESM.xls (258 kb)
Supplementary Table 4 (XLS 258 kb)
10142_2011_254_MOESM5_ESM.xls (101 kb)
Supplementary Table 5–10 (XLS 101 kb)
10142_2011_254_MOESM6_ESM.xls (36 kb)
Supplementary Table 11 (XLS 36 kb)
10142_2011_254_MOESM7_ESM.xls (28 kb)
Supplementary Table 12 (XLS 27 kb)
10142_2011_254_MOESM8_ESM.xls (83 kb)
Supplementary Table 13 (XLS 83 kb)
10142_2011_254_MOESM9_ESM.xls (38 kb)
Supplementary Table 14 (XLS 38 kb)

References

  1. Alabadi D, Yanovsky MJ, Mas P, Harmer SL, Kay SA (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12(9):757–761PubMedCrossRefGoogle Scholar
  2. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221PubMedCrossRefGoogle Scholar
  3. Andreeva AV, Kutuzov MA (1999) Physcomitrella patens gene/cDNA fragments related to genes encoding protein Ser/Thr phosphatases. J Plant Physiol 155(2):153–158CrossRefGoogle Scholar
  4. Andreeva AV, Kutuzov MA (2001) PPP family of protein Ser/Thr phosphatases: two distinct branches? Mol Biol Evol 18(3):448–452PubMedCrossRefGoogle Scholar
  5. Andreeva AV, Kutuzov MA (2004) Widespread presence of “bacterial-like” PPP phosphatases in eukaryotes. BMC Evol Biol 4:47PubMedCrossRefGoogle Scholar
  6. Asakura Y, Kikuchi S, Nakai M (2008) Non-identical contributions of two membrane-bound cpSRP components, cpFtsY and Alb3, to thylakoid biogenesis. Plant J 56(6):1007–1017PubMedCrossRefGoogle Scholar
  7. Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45(6):982–993PubMedCrossRefGoogle Scholar
  8. Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320(5878):938–941PubMedCrossRefGoogle Scholar
  9. Baginsky S, Gruissem W (2009) The chloroplast kinase network: new insights from large-scale phosphoproteome profiling. Mol Plant 2(6):1141–1153PubMedCrossRefGoogle Scholar
  10. Barta JR, Thompson RCA (2006) What is cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol 22(10):463–468PubMedCrossRefGoogle Scholar
  11. Bollen M, Peti W, Ragusa MJ, Beullens M (2010) The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 35(8):450–458PubMedCrossRefGoogle Scholar
  12. Bradshaw N, Walter P (2007) The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting. Mol Biol Cell 18(7):2728–2734PubMedCrossRefGoogle Scholar
  13. Braun S, Matuschewski K, Rape M, Thoms S, Jentsch S (2002) Role of the ubiquitin-selective CDC48(UFD1/NPL4)chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J 21(4):615–621PubMedCrossRefGoogle Scholar
  14. Brooks BE, Buchanan SK (2008) Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors. Biochim Biophys Acta 1778(9):1930–1945PubMedCrossRefGoogle Scholar
  15. Busch W, Wunderlich M, Schoffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41(1):1–14PubMedCrossRefGoogle Scholar
  16. Campbell EA, Westblade LF, Darst SA (2008) Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective. Curr Opin Microbiol 11(2):121–127PubMedCrossRefGoogle Scholar
  17. Chinkers M (2001) Protein phosphatase 5 in signal transduction. Trends Endocrinol Metabol 12(1):28–32CrossRefGoogle Scholar
  18. Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45PubMedCrossRefGoogle Scholar
  19. Clay NK, Nelson T (2005) The recessive epigenetic swellmap mutation affects the expression of two step II splicing factors required for the transcription of the cell proliferation gene STRUWWELPETER and for the timing of cell cycle arrest in the Arabidopsis leaf. Plant Cell 17(7):1994–2008PubMedCrossRefGoogle Scholar
  20. Cline K, Mori H (2001) Thylakoid Delta pH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J Cell Biol 154(4):719–729PubMedCrossRefGoogle Scholar
  21. Coates JC, Laplaze L, Haseloff J (2006) Armadillo-related proteins promote lateral root development in Arabidopsis. Proc Natl Acad Sci U S A 103(5):1621–1626PubMedCrossRefGoogle Scholar
  22. Cohen PT (1997) Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci 22(7):245–251PubMedCrossRefGoogle Scholar
  23. Cohen PT (2002) Protein phosphatase 1–targeted in many directions. J Cell Sci 115(Pt 2):241–256PubMedGoogle Scholar
  24. Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124(4):755–766PubMedCrossRefGoogle Scholar
  25. Date SV, Stoeckert CJ Jr (2006) Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res 16(4):542–549PubMedCrossRefGoogle Scholar
  26. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72(2):317–364, table of contentsPubMedCrossRefGoogle Scholar
  27. de Carbonnel M, Davis P, Roelfsema MR, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C (2010) The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152(3):1391–1405PubMedCrossRefGoogle Scholar
  28. De Marchis ML, Giorgi A, Schinina ME, Bozzoni I, Fatica A (2005) Rrp15p, a novel component of pre-ribosomal particles required for 60S ribosome subunit maturation. RNA 11(4):495–502PubMedCrossRefGoogle Scholar
  29. Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299(5607):705–708PubMedCrossRefGoogle Scholar
  30. Fujiwara M, Nagashima A, Kanamaru K, Tanaka K, Takahashi H (2000) Three new nuclear genes, sigD, sigE and sigF, encoding putative plastid RNA polymerase sigma factors in Aarabidopsis thaliana. FEBS Lett 481(1):47–52PubMedCrossRefGoogle Scholar
  31. Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43(7):689–696PubMedCrossRefGoogle Scholar
  32. Galperin MY, Koonin EV (2004) ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic Acids Res 32(18):5452–5463PubMedCrossRefGoogle Scholar
  33. Grennan AK (2006) Genevestigator. Facilitating Web-based gene-expression analysis. Plant Physiol 141(4):1164–1166PubMedCrossRefGoogle Scholar
  34. Haase S, Cabrera A, Langer C, Treeck M, Struck N, Herrmann S, Jansen PW, Bruchhaus I, Bachmann A, Dias S, Cowman AF, Stunnenberg HG, Spielmann T, Gilberger TW (2008) Characterization of a conserved rhoptry-associated leucine zipper-like protein in the malaria parasite Plasmodium falciparum. Infect Immun 76(3):879–887PubMedCrossRefGoogle Scholar
  35. Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U S A 102(29):10387–10392PubMedCrossRefGoogle Scholar
  36. Helmann JD (2006) Deciphering a complex genetic regulatory network: the Bacillus subtilis sigmaW protein and intrinsic resistance to antimicrobial compounds. Sci Prog 89(Pt 3–4):243–266PubMedCrossRefGoogle Scholar
  37. Hu G, Cabrera A, Kono M, Mok S, Chaal BK, Haase S, Engelberg K, Cheemadan S, Spielmann T, Preiser PR, Gilberger TW, Bozdech Z (2010) Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol 28(1):91–98PubMedCrossRefGoogle Scholar
  38. Hughes BT, Espenshade PJ (2008) Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member. EMBO J 27(10):1491–1501PubMedGoogle Scholar
  39. Hung NJ, Lo KY, Patel SS, Helmke K, Johnson AW (2008) Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast. Mol Biol Cell 19(2):735–744PubMedCrossRefGoogle Scholar
  40. Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33(3):113–121PubMedCrossRefGoogle Scholar
  41. Jasinski M, Sudre D, Schansker G, Schellenberg M, Constant S, Martinoia E, Bovet L (2008) AtOSA1, a member of the Abc1-like family, as a new factor in cadmium and oxidative stress response. Plant Physiol 147(2):719–731PubMedCrossRefGoogle Scholar
  42. Jen CH, Manfield IW, Michalopoulos I, Pinney JW, Willats WGT, Gilmartin PM, Westhead DR (2006) The Arabidopsis co-expression tool (ACT): a WWW-based tool and database for microarray-based gene expression analysis. Plant J 46(2):336–348PubMedCrossRefGoogle Scholar
  43. Jiang M, Sullivan SM, Walker AK, Strahler JR, Andrews PC, Maddock JR (2007) Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques. J Bacteriol 189(9):3434–3444PubMedCrossRefGoogle Scholar
  44. Jing HC, Dijkwel PP (2008) CPR5: A Jack of all trades in plants. Plant Signal Behav 3(8):562–563PubMedCrossRefGoogle Scholar
  45. Kapri-Pardes E, Naveh L, Adam Z (2007) The thylakoid lumen protease Deg1 is involved in the repair of photosystem II from photoinhibition in Arabidopsis. Plant Cell 19(3):1039–1047PubMedCrossRefGoogle Scholar
  46. Kapushesky M, Emam I, Holloway E, Kurnosov P, Zorin A, Malone J, Rustici G, Williams E, Parkinson H, Brazma A (2010) Gene expression atlas at the European bioinformatics institute. Nucleic Acids Res 38(Database issue):D690–D698PubMedCrossRefGoogle Scholar
  47. Karimpour-Fard A, Leach SM, Gill RT, Hunter LE (2008) Predicting protein linkages in bacteria: which method is best depends on task. BMC Bioinformatics 9:397PubMedCrossRefGoogle Scholar
  48. Kennelly PJ (2001) Protein phosphatases—a phylogenetic perspective. Chem Rev 101(8):2291–2312PubMedCrossRefGoogle Scholar
  49. Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil D, Koornneef M, Jansen RC (2007) Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci U S A 104(5):1708–1713PubMedCrossRefGoogle Scholar
  50. Kohler D, Schmidt-Gattung S, Binder S (2010) The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana. Plant Mol Biol 72(4–5):459–467PubMedCrossRefGoogle Scholar
  51. Kovács-Bogdán E, Soll J, Bolter B (2010) Protein import into chloroplasts: the Tic complex and its regulation. Biochim Biophys Acta 1803(6):740–747PubMedCrossRefGoogle Scholar
  52. Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19(2):473–484PubMedCrossRefGoogle Scholar
  53. Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ (2008) The nuclear factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228(5):709–723PubMedCrossRefGoogle Scholar
  54. Kutuzov MA, Andreeva AV (2008) Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol 161(2):81–90PubMedCrossRefGoogle Scholar
  55. LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, Schoenfeld LW, Ota I, Sahasrabudhe S, Kurschner C, Fields S, Hughes RE (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438(7064):103–107PubMedCrossRefGoogle Scholar
  56. Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299(5608):902–906PubMedCrossRefGoogle Scholar
  57. Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001) Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26(1):15–22PubMedCrossRefGoogle Scholar
  58. Lin R, Wang H (2004) Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol 136(4):4010–4022PubMedCrossRefGoogle Scholar
  59. Magoulas C, Zatsepina OV, Jordan PWH, Jordan EG, Fried M (1998) The SURF-6 protein is a component of the nucleolar matrix and has a high binding capacity for nucleic acids in vitro. Eur J Cell Biol 75(2):174–183PubMedCrossRefGoogle Scholar
  60. Marri L, Sparla F, Pupillo P, Trost P (2005) Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J Exp Bot 56(409):73–80PubMedGoogle Scholar
  61. Matsuyama A, Arai R, Yashiroda Y, Shirai A, Kamata A, Sekido S, Kobayashi Y, Hashimoto A, Hamamoto M, Hiraoka Y, Horinouchi S, Yoshida M (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 24(7):841–847PubMedCrossRefGoogle Scholar
  62. Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6(9):e225PubMedCrossRefGoogle Scholar
  63. Miotto G, Tessaro S, Rotta GA, Bonatto D (2007) In silico analyses of Fsf1 sequences, a new group of fungal proteins orthologous to the metazoan sideroblastic anemia-related sideroflexin family. Fungal Genet Biol 44(8):740–753PubMedCrossRefGoogle Scholar
  64. Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carre IA, Coupland G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2(5):629–641PubMedCrossRefGoogle Scholar
  65. Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci U S A 98(4):2053–2058PubMedCrossRefGoogle Scholar
  66. Moorhead GB, De Wever V, Templeton G, Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417(2):401–409PubMedCrossRefGoogle Scholar
  67. Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, Micol JL, Van Montagu M, Inze D, Van Lijsebettens M (2005) The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci U S A 102(21):7754–7759PubMedCrossRefGoogle Scholar
  68. Nguyen PH, Hasek J, Kohlwein SD, Romero C, Choi JH, Vancura A (2005) Interaction of Pik1p and Sjl proteins in membrane trafficking. FEMS Yeast Res 5(4–5):363–371PubMedCrossRefGoogle Scholar
  69. Nixon PJ, Michoux F, Yu JF, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot-London 106(1):1–16CrossRefGoogle Scholar
  70. Oeffinger M, Fatica A, Rout MP, Tollervey D (2007) Yeast Rrp14p is required for ribosomal subunit synthesis and for correct positioning of the mitotic spindle during mitosis. Nucleic Acids Res 35(4):1354–1366PubMedCrossRefGoogle Scholar
  71. Pagano A, Letourneur F, Garcia-Estefania D, Carpentier JL, Orci L, Paccaud JP (1999) Sec24 proteins and sorting at the endoplasmic reticulum. J Biol Chem 274(12):7833–7840PubMedCrossRefGoogle Scholar
  72. Pakrasi HB (1995) Genetic analysis of the form and function of photosystem I and photosystem II. Annu Rev Genet 29:755–776PubMedCrossRefGoogle Scholar
  73. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263PubMedCrossRefGoogle Scholar
  74. Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150(3):1541–1555PubMedCrossRefGoogle Scholar
  75. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12(17):1484–1495PubMedCrossRefGoogle Scholar
  76. Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JW, Shaw PJ (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16(1):260–269PubMedCrossRefGoogle Scholar
  77. Pesaresi P, Pribil M, Wunder T, Leister D (2010) Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. Biochim Biophys Acta 1807(8):887–896PubMedGoogle Scholar
  78. Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmuller R (2006) pTAC2, −6, and −12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18(1):176–197PubMedCrossRefGoogle Scholar
  79. Privat I, Hakimi MA, Buhot L, Favory JJ, Mache-Lerbs S (2003) Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3. Plant Mol Biol 51(3):385–399PubMedCrossRefGoogle Scholar
  80. Proveniers M, Rutjens B, Brand M, Smeekens S (2007) The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J 52(5):899–913PubMedCrossRefGoogle Scholar
  81. Puthiyaveetil S, Allen JF (2009) Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression. Proc Biol Sci 276(1665):2133–2145PubMedCrossRefGoogle Scholar
  82. Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK, Petersen K, Mackinlay J, Loake GJ, Mundy J, Morris PC (2008) Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148(1):212–222PubMedCrossRefGoogle Scholar
  83. Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75(1):1–10PubMedCrossRefGoogle Scholar
  84. Schult K, Meierhoff K, Paradies S, Toller T, Wolff P, Westhoff P (2007) The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana. Plant Cell 19(4):1329–1346PubMedCrossRefGoogle Scholar
  85. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527PubMedCrossRefGoogle Scholar
  86. Schwager KM, Calderon-Villalobos LI, Dohmann EM, Willige BC, Knierer S, Nill C, Schwechheimer C (2007) Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development. Plant Cell 19(4):1163–1178PubMedCrossRefGoogle Scholar
  87. Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J, Richaud P, Rolland N (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281(5):2882–2892PubMedCrossRefGoogle Scholar
  88. Shimizu M, Kato H, Ogawa T, Kurachi A, Nakagawa Y, Kobayashi H (2010) Sigma factor phosphorylation in the photosynthetic control of photosystem stoichiometry. Proc Natl Acad Sci U S A 107(23):10760–10764PubMedCrossRefGoogle Scholar
  89. Shpakovskii GV, Lebedenko EN (1997) The first member of a novel family of eukaryotic transcription factors detected by the heterospecific complementation. Bioorg Khim 23(3):234–237PubMedGoogle Scholar
  90. Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134(6):1051–1060PubMedCrossRefGoogle Scholar
  91. Skalitzky CA, Martin JR, Harwood JH, Beirne JJ, Adamczyk BJ, Heck GR, Cline K, Fernandez DE (2010) Plastids contain a second sec translocase system with essential functions. Plant Physiol 155(1):354–369PubMedCrossRefGoogle Scholar
  92. Sorkin A (2000) The endocytosis machinery. J Cell Sci 113(Pt 24):4375–4376PubMedGoogle Scholar
  93. Srinivasasainagendra V, Page GP, Mehta T, Coulibaly I, Loraine AE (2008) CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiol 147(3):1004–1016PubMedCrossRefGoogle Scholar
  94. Sterner DE, Grant PA, Roberts SM, Duggan LJ, Belotserkovskaya R, Pacella LA, Winston F, Workman JL, Berger SL (1999) Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 19(1):86–98PubMedGoogle Scholar
  95. Stolarczyk EI, Reiling CJ, Paumi CM (2011) Regulation of ABC transporter function via phosphorylation by protein kinases. Curr Pharm Biotechnol 12:621–635PubMedCrossRefGoogle Scholar
  96. Thum KE, Shin MJ, Gutierrez RA, Mukherjee I, Katari MS, Nero D, Shasha D, Coruzzi GM (2008) An integrated genetic, genomic and systems approach defines gene networks regulated by the interaction of light and carbon signaling pathways in Arabidopsis. BMC Syst Biol 2:31PubMedCrossRefGoogle Scholar
  97. Tsuruta H, Aizono Y (2003) Catalytic efficiency and some structural properties of cold-active protein-tyrosine-phosphatase. J Biochem 133(2):225–230PubMedCrossRefGoogle Scholar
  98. Tsuruta H, Mikami B, Aizono Y (2005) Crystal structure of cold-active protein-tyrosine phosphatase from a psychrophile, Shewanella sp. J Biochem 137(1):69–77PubMedCrossRefGoogle Scholar
  99. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26(6):369–376PubMedCrossRefGoogle Scholar
  100. Wilson-Grady JT, Villen J, Gygi SP (2008) Phosphoproteome analysis of fission yeast. J Proteome Res 7(3):1088–1097PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations