Skip to main content
Log in

Overlapping protective roles for glutathione transferase gene family members in chemical and oxidative stress response in Agrobacterium tumefaciens

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

In the present work, we describe the characterisation of the glutathione transferase (GST) gene family from Agrobacterium tumefaciens C58. A genome survey revealed the presence of eight GST-like proteins in A. tumefaciens (AtuGSTs). Comparison by multiple sequence alignment generated a dendrogram revealing the phylogenetic relationships of AtuGSTs-like proteins. The beta and theta classes identified in other bacterial species are represented by five members in A. tumefaciens C58. In addition, there are three “orphan” sequences that do not fit into any previously recognised GST classes. The eight GST-like genes were cloned, expressed in Escherichia coli and their substrate specificity was determined towards 17 different substrates. The results showed that AtuGSTs catalyse a broad range of reactions, with different members of the family exhibiting quite varied substrate specificity. The 3D structures of AtuGSTs were predicted using molecular modelling. The use of comparative sequence and structural analysis of the AtuGST isoenzymes allowed us to identify local sequence and structural characteristics between different GST isoenzymes and classes. Gene expression profiling was conducted under normal culture conditions as well as under abiotic stress conditions (addition of xenobiotics, osmotic stress and cold and heat shock) to induce and monitor early stress-response mechanisms. The results reveal the constitutive expression of GSTs in A. tumefaciens and a modulation of GST activity after treatments, indicating that AtuGSTs presumably participate in a wide range of functions, many of which are important in counteracting stress conditions. These functions may be relevant to maintaining cellular homeostasis as well as in the direct detoxification of toxic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AtuGST:

Agrobacterium tumefaciens glutathione transferase

BCNB:

1-Bromo-2,4-dinitrobenzene

CDNB:

1-Chloro-2,4-dinitrobenzene

CuOOH:

Cumene hydroperoxide

Fluorodifen:

4-Nitrophenyl 2-nitro-4-trifluoromethylphenyl ether

FDNB:

1-Fluoro-2,4-dinitrobenzene

G-site:

Glutathione binding site

GSH:

Glutathione

GST:

Glutathione transferase

H-site:

Hydrophobic binding site

IDNB:

1-Iodo-2,4-dinitrobenzene

OaGST:

Ochrobactrum anthropi glutathione transferase

ORF:

Open reading frame

PmGST:

Proteus mirabilis glutathione transferase

pNBC:

p-Nitrobenzyl chloride

Nb-GSH:

S-(p-nitrobenzyl)-glutathione

pNPA:

p-Nitrophenyl acetate

RMSD:

Root mean square deviation

References

  • Alias Z, Clark AG (2007) Studies on the glutathione S-transferase proteome of adult Drosophila melanogaster: responsiveness to chemical challenge. Proteomics 7:3618–3628

    Article  PubMed  CAS  Google Scholar 

  • Alin P, Danielson UH, Mannervik B (1985) 4-Hydroxyalk-2-enals are substrates for glutathione transferase. FEBS Lett 179:267–270

    Article  PubMed  CAS  Google Scholar 

  • Allocati N, Favaloro B, Masulli M, Alexeyev MF, Di Ilio C (2003) Proteus mirabilis glutathione S-transferase B1-1 is involved in protective mechanisms against oxidative and chemical stresses. Biochem J 373:305–311

    Article  PubMed  CAS  Google Scholar 

  • Allocati N, Masulli M, Pietracupa M, Federici L, Di Ilio C (2006) Evolutionarily conserved structural motifs in bacterial GST (glutathione S-transferase) are involved in protein folding and stability. Biochem J 394:11–17

    Article  PubMed  CAS  Google Scholar 

  • Allocati N, Federici L, Massulli M, Di Ilio C (2008) Glutathione transferases in bacteria. FEMS J 276:58–75

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18

    Article  PubMed  CAS  Google Scholar 

  • Axarli Ι, Rigden DJ, Labrou NE (2004) Characterization of the ligandin site of maize glutathione S-transferase I. Biochem J 382:885–893

    Article  PubMed  CAS  Google Scholar 

  • Axarli I, Dhavala P, Papageorgiou AC, Labrou NE (2009a) Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site. J Mol Biol 385:984–1002

    Article  PubMed  CAS  Google Scholar 

  • Axarli I, Dhavala P, Papageorgiou AC, Labrou NE (2009b) Crystal structure of Glycine max glutathione transferase in complex with glutathione: investigation of the mechanism operating by the Tau class glutathione transferases. Biochem J 422:247–256

    Article  PubMed  CAS  Google Scholar 

  • Casalone E, Allocati N, Ceccarelli I, Masulli M, Rossjohn J, Di Parker MW, Ilio C (1998) Site-directed mutagenesis of Proteus mirabilis glutathione transferase B1-1G-site. FEBS Lett 423:122–124

    Article  PubMed  Google Scholar 

  • Chiou SH (1983) DNA- and protein-scission activities of ascorbate in the presence of copper ion and a copper-peptide complex. J Biochem (Tokyo) 94:1259–1267

    CAS  Google Scholar 

  • Cocco R, Stenberg G, Dragani B, Rossi Principe D, Paludi D, Mannervik B, Aceto A (2001) The folding and stability of human alpha class glutathione transferase A1-1 depend on distinct roles of a conserved N-capping box and hydrophobic staple motif. J Biol Chem 276:32177–32183

    Article  PubMed  CAS  Google Scholar 

  • Conn S, Curtin C, Bezier A, Franco C, Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Expt Bot 59:3621–3634

    Article  CAS  Google Scholar 

  • Cummins I, Cole DJ, Edwards R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285–292

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, McEwen AG, Lapthorn AJ, Edwards R (2003) Forced evolution of a herbicide detoxifying glutathione transferase. J Biol Chem 278:23930–23935

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Lapthorn A, Madesis P, Mudd EA, Day A, Edwards R (2008) Binding and glutathione conjugation of porphyrinogens by plant glutathione transferases. J Biol Chem 283:20268–20276

    Article  PubMed  CAS  Google Scholar 

  • Durbin ML, McCaig B, Clegg MT (2000) Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol Biol 42:79–92

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. Meth Enzymol 401:169–186

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Benedetti A, Lang J, Fulceri R, Fauler G, Comporti M (1986) Studies on the mechanism of formation of 4-hydroxynonenal during microsomal lipid peroxidation. Biochim Biophys Acta 876:154–166

    PubMed  CAS  Google Scholar 

  • Favaloro B, Tamburro A, Angelucci S, De Luca A, Melino S, Di Ilio C, Rotilio D (1998) Molecular cloning, expression and site-directed mutagenesis of glutathione S-transferase from Ochrobactrum anthropi. Biochem J 335:573–579

    PubMed  CAS  Google Scholar 

  • Favaloro B, Tamburro A, Trofino MA, Bologna L, Ritilio D, Heipieper HJ (2000) Modulation of the glutathione S-transferase in Orchrobactrum anthropi: function of xenobiotic substrates and other forms of stress. Biochem J 346:553–559

    Article  PubMed  CAS  Google Scholar 

  • Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng 23:149–169

    Article  PubMed  CAS  Google Scholar 

  • Gonneau M, Mornet R, Laloue M (1998) A Nicotiana plumbaginifolia protein labeled with an azido cytokinin agonist is a glutathione S-transferase. Physiol Plant 103:114–124

    Article  CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  PubMed  CAS  Google Scholar 

  • Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Rad Res 31:273–300

    Article  CAS  Google Scholar 

  • Hegazy UM, Mannervik B, Stenberg GJ (2004) Functional role of the lock and key motif at the subunit interface of glutathione transferase p 1–1. J Biol Chem 279:9586–9596

    Article  PubMed  CAS  Google Scholar 

  • Kalloniati C, Tsikou D, Lampiri V, Fotelli MN, Rennenberg H, Chatzipavlidis I, Fasseas C, Katinakis P, Flemetakis E (2009) Characterization of a Mesorhizobium loti alpha-type carbonic anhydrase and its role in symbiotic nitrogen fixation. J Bacteriol 191:2593–2600

    Article  PubMed  CAS  Google Scholar 

  • Kampranis SC, Damianova R, Atallah M, Toby G, Kondi G, Tsichlis PN, Makris AM (2000) A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J Biol Chem 275:29207–29216

    Article  PubMed  CAS  Google Scholar 

  • Kella A, Venturaa N, Kahna N, Thomas E, Johnson TE (2007) Activation of SKN-1 by novel kinases in Caenorhabditis elegans. Free Rad Biol Med 43:1560–1566

    Article  Google Scholar 

  • Kolm RH, Danielson UH, Zhang Y, Talalay P, Mannervik B (1995) Isothiocyanates as substrates for human glutathione transferases: structure–activity studies. Biochem J 311:453–459

    PubMed  CAS  Google Scholar 

  • Kosloff M, Han GW, Krishna SS, Schwarzenbacher R, Fasnacht M, Elsliger MA, Abdubek P, Agarwalla S, Ambing E, Astakhova T, Axelrod HL, Canaves JM, Carlton D, Chiu HJ, Clayton T, DiDonato M, Duan L, Feuerhelm J, Grittini C, Grzechnik SK, Hale J, Hampton E, Haugen J, Jaroszewski L, Jin KK, Johnson H, Klock HE, Knuth MW, Koesema E, Kreusch A, Kuhn P, Levin I, McMullan D, Miller MD, Morse AT, Moy K, Nigoghossian E, Okach L, Oommachen S, Page R, Paulsen J, Quijano K, Reyes R, Rife CL, Sims E, Spraggon G, Sridhar V, Stevens RC, van den Bedem H, Velasquez J, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA (2006) Comparative structural analysis of a novel glutathioneS-transferase (ATU5508) from Agrobacterium tumefaciens at 2.0 A resolution. Proteins 65:527–537

    Google Scholar 

  • La Roche SD, Leisinger T (1990) Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. J Bacteriol 172:164–171

    PubMed  Google Scholar 

  • Lawrence LA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Mannervik B, Danielson UH (1988) Glutathione transferases-structure and catalytic activity. CRC Crit Rev Biochem 23:283–337

    Article  PubMed  CAS  Google Scholar 

  • Marles-Wright J, Lewis RJ (2007) Stress responses of bacteria. Curr Opin Struct Biol 17:755–760

    Article  PubMed  CAS  Google Scholar 

  • McGonigle B, Keeler SJ, Lau SM, Koeppe MK, O’Keefe DP (2000) A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol 124:1105–1120

    Article  PubMed  CAS  Google Scholar 

  • Meng EC, Pettersen EF, Couch, GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics, 339

  • Oakley AJ (2005) Glutathione transferases: new functions. Curr Opin Struct Biol 15:716–723

    Article  PubMed  CAS  Google Scholar 

  • Pemble SE, Wardle AF, Taylor JB (1996) Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J 319:749–754

    PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50:895–913

    Article  CAS  Google Scholar 

  • Ricci G, Caccuri AM, Lo Bello M, Pastore A, Piemonte F, Federici G (1994) Colorimetric and fluorometric assays of glutathione transferase based on 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Anal Biochem 218:463–465

    Article  PubMed  CAS  Google Scholar 

  • Rossjohn J, Polekhina G, Feil SC, Allocati N, Masulli M, De Illio C, Parker MW (1998) A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Structure 6:721–734

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Sankararamakrishnan R, Verma S, Kumar S (2005) ATCUN-like metal-binding motifs in proteins: identification and characterization by crystal structure and sequence analysis. Proteins 58:211–221

    Article  PubMed  CAS  Google Scholar 

  • Sano K, Totsuka Y, Ikegami Y, Uesugi T (2002) Metabolism of sulphobromophthalein II. Species differences between rats, guinea-pigs and rabbits. J Pharm Pharmacol 54:231–239

    Article  PubMed  CAS  Google Scholar 

  • Sheehan D, Casey JP (1993) Microbial glutathione S-transferases. Comp Biochem Physiol B 104:1–6

    Article  PubMed  CAS  Google Scholar 

  • Stenberg G, Dragani B, Cocco R, Mannervik B, Aceto A (2000) A conserved “hydrophobic staple motif” plays a crucial role in the refolding of human glutathione transferase P1-1. J Biol Chem 275:10421–10428

    Article  PubMed  CAS  Google Scholar 

  • Tamburro A, Robuffo I, Heipieper HJ, Allocati N, Rotilio D, Di Ilio C, Favaloro B (2004) Expression of glutathione S-transferase and peptide methionine sulphoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates. FEMS Microbiol Lett 241:151–156

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DJ, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Veal EA, Toone WM, Jones N, Morgan BA (2002) Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J Biol Chem 277:35523–35531

    Article  PubMed  CAS  Google Scholar 

  • Vuilleumier S (1997) Bacterial glutathione S-transferases: what are they good for? J Bacteriol 179:1431–1441

    PubMed  CAS  Google Scholar 

  • Wiktelius E, Stenberg G (2007) Novel class of glutathione transferases from cyanobacteria exhibit high catalytic activities towards naturally occurring isothiocyanates. Biochem J 406:115–123

    Article  PubMed  CAS  Google Scholar 

  • Xing K, Lou MF (2003) The possible physiological function of thioltransferase in cells. FASEB J 17:2088–2090

    PubMed  CAS  Google Scholar 

  • Zablotowicz RM, Hoagland RE, Locke MA (1994) Glutathione S-transferase activity in Rhizosphere bacteria and the potential for herbicide detoxification. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, pp 184–198

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Hellenic General Secretariat for Research and Technology. ACP thanks the Academy of Finland for financial support (grant number 121278) and CSC-IT Center for Science Ltd. (Espoo, Finland) for access to computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos E. Labrou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Primers used for gene amplification and cloning. (DOCX 14 kb)

Supplementary Table 2

Primers used for real-time RT-qPCR. (DOCX 15 kb)

Supplementary Table 3

The crystal structures used as templates in homology modeling. (DOCX 17 kb)

Supplementary Table 4

RMSD (in Å) between the homology models. (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skopelitou, K., Muleta, A.W., Pavli, O. et al. Overlapping protective roles for glutathione transferase gene family members in chemical and oxidative stress response in Agrobacterium tumefaciens . Funct Integr Genomics 12, 157–172 (2012). https://doi.org/10.1007/s10142-011-0248-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-011-0248-x

Keywords

Navigation