Functional & Integrative Genomics

, Volume 12, Issue 1, pp 183–198 | Cite as

Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization

  • Adrien Gallou
  • Stéphane Declerck
  • Sylvie CranenbrouckEmail author
Original Paper


The establishment of arbuscular mycorrhizal associations causes major changes in plant roots and affects significantly the host in term of plant nutrition and resistance against biotic and abiotic stresses. As a consequence, major changes in root transcriptome, especially in plant genes related to biotic stresses, are expected. Potato microarray analysis, followed by real-time quantitative PCR, was performed to detect the wide transcriptome changes induced during the pre-, early and late stages of potato root colonization by Glomus sp. MUCL 41833. The microarray analysis revealed 526 up-regulated and 132 down-regulated genes during the pre-stage, 272 up-regulated and 109 down-regulated genes during the early stage and 734 up-regulated and 122 down-regulated genes during the late stage of root colonization. The most important class of regulated genes was associated to plant stress and in particular to the WRKY transcription factors genes during the pre-stage of root colonization. The expression profiling clearly demonstrated a wide transcriptional change during the pre-, early and late stages of root colonization. It further suggested that the WRKY transcription factor genes are involved in the mechanisms controlling the arbuscular mycorrhizal establishment by the regulation of plant defence genes.


Arbuscular mycorrhiza fungus Defence genes Gene expression In vitro system Microarray Solanum tuberosum 



This research was supported by the Direction générale opérationnelle de l’Agriculture, des Ressources naturelles et de l’Environnement du service public de wallonie under contract number D31-1149, entitled Valorisation de la microflore bénéfique des sols pour le contrôle de la flore pathogène des productions de pomme de terre comme alternative à l’utilisation des pesticides. S.C. gratefully acknowledges the financial contribution of the Belgian Federal Science Policy Office (contract BCCM C4/00/001). We thank André Clippe, Institut of Life Science of the Université catholique de Louvain, for technical assistance in microarray experiment.

Supplementary material

10142_2011_241_MOESM1_ESM.doc (101 kb)
Fig. S1 The MapMan Metabolism Overview display created using the 865 regulated genes identified from the late stage versus the control comparison. This figure shows the impact of Glomus sp. MUCL 41833 during the late stage of potato roots colonization on the genes involved in metabolism process. In particular, the induction of the genes related to the biosynthesis of mycorradicin (i.e. 1-deoxy-d-xylulose 5-phosphate synthase 2 (DXS-2; MICRO.13123.C1), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR; MICRO.5323.C2), phytoene desaturase (PDS; MICRO.11694.C2 and MICRO.5233.C2), zeta-carotene desaturase (ZDS; MICRO.4706.C1) and carotenoid isomerase (CRTISO)) in the secondary metabolism process of terpenes. The fold change is displayed as illustrated in the fold change colour bar in the upper right of each panel (blue is repressed and red is induced) (DOC 101 kb)
10142_2011_241_MOESM2_ESM.doc (42 kb)
Table S1 Primer sequences and amplification length of the genes used in the real-time quantitative PCR analysis (DOC 42.5 kb)
10142_2011_241_MOESM3_ESM.doc (36 kb)
Table S2 Root colonization and total phosphorus content of the leaves of potato plantlets grown 12 days in presence (i.e. +AMF) or absence (i.e. −AMF) of an actively growing extra-radical mycelium networks of Glomus sp. MUCL 41833 (DOC 35.5 kb)
10142_2011_241_MOESM4_ESM.xls (118 kb)
Table S3 The 658 genes regulated during the pre-stage of potato root colonization by Glomus sp. MUCL 41833 as compared with the control treatment, and their changes in expression (XLS 117 kb)
10142_2011_241_MOESM5_ESM.xls (74 kb)
Table S4 The 381 genes regulated during the early stage of potato root colonization by Glomus sp. MUCL 41833 as compared with the control treatment, and their changes in expression (XLS 74.5 kb)
10142_2011_241_MOESM6_ESM.xls (146 kb)
Table S5 The 865 genes regulated during the late stage of potato root colonization by Glomus sp. MUCL 41833 as compared with the control treatment, and their changes in expression (XLS 146 kb)
10142_2011_241_MOESM7_ESM.xls (24 kb)
Table S6 Overview of the ethylene (ET), acid salicylic (SA) and jasmonic acid (JA) marker genes during the pre-, early and late stages of potato root colonization by Glomus sp. MUCL 41833 as compared with the control treatments, and their changes in expression (XLS 24.0 kb)


  1. Balestrini R, Josè-Estanyol M, Puigdomènech P, Bonfante P (1997) Hydroxyproline rich glycoprotein mRNA accumulation in maize root cells colonized by the arbuscular mycorrhizal fungus as revealed by in situ hybridization. Protoplasma 19:36–42CrossRefGoogle Scholar
  2. Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692PubMedCrossRefGoogle Scholar
  3. Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza 14:253–262PubMedCrossRefGoogle Scholar
  4. Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol 189:347–355PubMedCrossRefGoogle Scholar
  5. Chang MM, Hadwiger LA, Horovitz D (1992) Molecular characterization of a pea β-1,3-glucanase induced by Fusarium solani and chitosan challenge. Plant Mol Biol 20:609–618PubMedCrossRefGoogle Scholar
  6. Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512PubMedCrossRefGoogle Scholar
  7. Cranenbrouck S, Voets L, Bivort C, Renard L, Stullu DG, Declerck S (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 341–348CrossRefGoogle Scholar
  8. Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585CrossRefGoogle Scholar
  9. Dermatsev V, Weingarten-Baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, Mayzlish-Gati E, Zilberstein A, Koltai H, Kapulnik Y (2010) Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). Mol Plant Pathol 11:121–135PubMedCrossRefGoogle Scholar
  10. Doner LW, Becard G (1991) Solubilisation of gellan gels by chelation of cations. Biotechnol Tech 5:25–28CrossRefGoogle Scholar
  11. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581PubMedCrossRefGoogle Scholar
  12. Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184:975–987PubMedCrossRefGoogle Scholar
  13. Franken P, Donges K, Grunwald U, Kost G, Rexr KH, Tamasloukht MB, Waschke A, Zeuske D (2007) Gene expression analysis of arbuscule development and functioning. Phytochemistry 68:68–74PubMedCrossRefGoogle Scholar
  14. Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicit defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230CrossRefGoogle Scholar
  15. Gallou A, De Jaeger N, Cranenbrouck S, Declerck S (2010) Fast track in vitro mycorrhization of potato plantlets allow studies on gene expression dynamics. Mycorrhiza 20:201–207PubMedCrossRefGoogle Scholar
  16. Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499PubMedCrossRefGoogle Scholar
  17. Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10PubMedCrossRefGoogle Scholar
  18. Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212PubMedCrossRefGoogle Scholar
  19. Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070PubMedCrossRefGoogle Scholar
  20. Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110PubMedCrossRefGoogle Scholar
  21. Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, Parniske M, Wang TL, Downie JA (2006) Lotus japonicus nodulation requires two GRAS-domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol 142:1739–1750PubMedCrossRefGoogle Scholar
  22. Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo JA, García-Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564PubMedCrossRefGoogle Scholar
  23. Herrera-Medina MJ, Tamayo M, Vierheilig H, Ocampo JA, García-Garrido JM (2008) The jasmonic acid signalling pathway restricts the development of the arbuscular mycorrhizal association in tomato. J Plant Growth Regul 27:221–230CrossRefGoogle Scholar
  24. Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301PubMedCrossRefGoogle Scholar
  25. Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967PubMedCrossRefGoogle Scholar
  26. Kapulnik Y, Volpin H, Itzhaki H, Ganon D, Galili S, David R, Shaul O, Elad Y, Chet I, Okon Y (1996) Suppression of defence responses in mycorrhizal alfalfa and tobacco roots. New Phytol 133:59–64CrossRefGoogle Scholar
  27. Kasprzewska A (2003) Plant chitinases—regulation and function. Cell Mol Biol Lett 8:809–824PubMedGoogle Scholar
  28. Kloosterman B, De Koeyer D, Griffiths R, Flinn B, Steuernagel B, Scholz U, Sonnewald S, Sonnewald U, Bryan GJ, Prat S et al (2008) Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Funct Integr Genomics 8:329–340PubMedCrossRefGoogle Scholar
  29. Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Interact 20:120–128PubMedCrossRefGoogle Scholar
  30. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GED (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci USA 105:9823–9828PubMedCrossRefGoogle Scholar
  31. Kurepa J, Smalle JA (2008) Structure, function and regulation of plant proteasomes. Biochimie 90:324–335PubMedCrossRefGoogle Scholar
  32. Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signalling pathways in plant defense. Plant J 46:477–491PubMedCrossRefGoogle Scholar
  33. Liu J, Blaylock LA, Endre G, Cho J, Town CD, Vanden Bosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123PubMedCrossRefGoogle Scholar
  34. Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544PubMedCrossRefGoogle Scholar
  35. Lopez-Raez JA, Verhage A, Fernandez I, Garcia JM, Azcon-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 10:2589–2601CrossRefGoogle Scholar
  36. Martin-Rodriguez JA, Leon-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Müller J, Garcia-Garrido JM (2011) Ethylene dependent⁄ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205CrossRefGoogle Scholar
  37. Mauch F, Staehelin LA (1989) Functional implication of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1:447–457PubMedCrossRefGoogle Scholar
  38. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  39. Medina MJH, Gagnon H, Piché Y, Ocampo JA, García Garrido JM, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998CrossRefGoogle Scholar
  40. Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715PubMedCrossRefGoogle Scholar
  41. Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681PubMedCrossRefGoogle Scholar
  42. Pandley SP, Somssich E (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655CrossRefGoogle Scholar
  43. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36PubMedCrossRefGoogle Scholar
  44. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161CrossRefGoogle Scholar
  45. Pozo MJ, Azcón-Aguilar C (2007) Unravelling mycorrhiza induced resistance. Curr Opin Plant Biol 10:393–398PubMedCrossRefGoogle Scholar
  46. Pozo MJ, Verhage A, Jung SC, Lopez-Raez JA, Azcón-Aguilar C (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhiza: physiology and function. Springer, Berlin, pp 193–207CrossRefGoogle Scholar
  47. Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466PubMedCrossRefGoogle Scholar
  48. Riedel T, Groten K, Baldwin IT (2008) Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not. Plant Cell Environ 31:1203–1213PubMedCrossRefGoogle Scholar
  49. Rotter A, Usadel B, Baebler S, Stitt M, Gruden K (2007) Adaptation of the MapMan ontology to biotic stress responses: application in solanaceous species. Plant Methods 3:1CrossRefGoogle Scholar
  50. Ruíz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V (1999) Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol Plant Microbe Interact 12:976–984CrossRefGoogle Scholar
  51. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258PubMedCrossRefGoogle Scholar
  52. Salzer P, Bonanomi A, Beyer K, Vogeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant Microbe Interact 13:763–777PubMedCrossRefGoogle Scholar
  53. Sanchez L, Weidmann S, Brechenmacher L, Batoux M, van Tuinen D, Lemanceau P, Gianinazzi S, Gianinazzi-Pearson V (2004) Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. New Phytol 161:855–863CrossRefGoogle Scholar
  54. Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  55. Siciliano V, Genre A, Balestrini R, Cappellazo G, de Wit PJGM, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration appartus. Plant Physiol 144:1455–1466PubMedCrossRefGoogle Scholar
  56. Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308:1789–1791PubMedCrossRefGoogle Scholar
  57. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, CambridgeGoogle Scholar
  58. Stumpe M, Carsjens JG, Stenzel I, Gobel C, Lang I, Pawlowski K, Hause B, Feussner I (2005) Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochemistry 66:781–791PubMedCrossRefGoogle Scholar
  59. Takeda N, Sato S, Asamizu E, Tabata S, Parniske M (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J 58:766–777PubMedCrossRefGoogle Scholar
  60. Thibaud-Nissen F, Wu H, Richmond T, Redman JC, Johnson C, Green R, Arias J, Town CD (2006) Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant J 47:152–162PubMedCrossRefGoogle Scholar
  61. Tkizawa M, Goto A, Watanabe Y (2005) The tobacco ubiquitin-activating enzymes NtE1A and NtE1B are induced by tobacco virus, wounding and stress hormones. Mol Cells 19:228–231Google Scholar
  62. Voets L, Dupré de Boulois H, Renard L, Strullu DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111–118PubMedCrossRefGoogle Scholar
  63. Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19:346–356CrossRefGoogle Scholar
  64. Walter MH, Floss DS, Hans J, Fester T, Strack D (2007) Apocarotenold biosynthesis in arbuscular mycorrhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation. Phytochemistry 68:130–138PubMedCrossRefGoogle Scholar
  65. Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:123CrossRefGoogle Scholar
  66. Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato—role of jasmonic acid. J Plant Physiol 163:297–306PubMedCrossRefGoogle Scholar
  67. Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant Microbe Interact 17:1385–1393PubMedCrossRefGoogle Scholar
  68. Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Adrien Gallou
    • 1
  • Stéphane Declerck
    • 1
  • Sylvie Cranenbrouck
    • 2
    Email author
  1. 1.Université catholique de Louvain (UCL), Earth and Life Institute, MycologyLouvain-la-NeuveBelgium
  2. 2.Université catholique de Louvain (UCL), Earth and Life Institute, Mycology-Mycothèque de l’Université catholique de Louvain (MUCL), part of the Belgian Coordinated Collections of Micro-organisms (BCCM)Louvain-la-NeuveBelgium

Personalised recommendations