Skip to main content
Log in

A candidate gene OsAPC6 of anaphase-promoting complex of rice identified through T-DNA insertion

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

A dwarf mutant (Oryza sativa anaphase-promoting complex 6 (OsAPC6)) of rice cultivar Basmati 370 with 50% reduced plant height as compared to the wild type was isolated by Agrobacterium tumefaciens-mediated transformation using HmR Ds cassette. This mutant was found to be insensitive to exogenous gibberellic acid (GA3) application. Homozygous mutant plants showed incomplete penetrance and variable expressivity for plant height and pleiotropic effects including gibberellic acid insensitivity, reduced seed size, panicle length, and female fertility. Single copy insertion of T-DNA and its association with OsAPC6 was confirmed by Southern hybridization, germination on hygromycin, and 3:1 segregation of HPT gene in F2 from OsAPC6 × Basmati 370 cross. The T-DNA flanking region sequenced through thermal asymmetric interlaced polymerase chain reaction showed a single hit on chromosome 3 of japonica rice cultivar Nipponbare in the second exonic region of a gene which encodes for sixth subunit of anaphase-promoting complex/cyclosome. The candidate gene of 8.6-kb length encodes a 728-amino acid protein containing a conserved tetratricopeptide repeat (TPR) domain and has only a paralog, isopenicillin N-synthase family protein on the same chromosome without the TPR domain. There was no expression of the gene in the mutant while in Basmati 370, it was equal in both roots and shoots. The knockout mutant OsAPC6 interferes with the gibberellic acid signaling pathway leading to reduced height and cell size probably through ubiquitin-mediated proteolysis. Further functional validation of the gene through RNAi is in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GA:

Gibberellic acid

APC:

Anaphase-promoting complex

sd1 :

semidwarf 1

TPR:

Tetratricopeptide repeat

References

  • Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nature Rev Genet 7:524–536

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289

    Article  CAS  PubMed  Google Scholar 

  • Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13:152–156

    Article  CAS  PubMed  Google Scholar 

  • Bhalla A, Osman Basha P, Kumar M, Singh K, Rajpurohit D, Randhawa GS, Dhaliwal HS (2009) Linkage mapping of polyembryonic, oligoculm and gibberellic acid insensitive dwarf insertional mutants of Oryza sativa var. Basmati 370. SABRAO J Breed and Genet 41:13–23

    Google Scholar 

  • Blilou I, Fugier F, Folmer S, Serralbo O, Willemsen V, Wolkenfelt H, Eloy NB, Ferreira PCG, Weisbeek PJ, Scheres B (2002) The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev 16:2566–2575

    Article  CAS  PubMed  Google Scholar 

  • Bouchez D, Hofte H (1998) Functional genomics in plants. Plant Physiol 118:725–732

    Article  CAS  PubMed  Google Scholar 

  • Capron A, Okresz L, Genschik P (2003) First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase. Trends Plant Sci 8:83–89

    Article  CAS  PubMed  Google Scholar 

  • Chin HG, Choe MS, Lee SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC (1999) Molecular analysis of rice plants harboring an Ac / Ds transposable element-mediated gene trapping system. Plant J 19:615–623

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal HS, Das A, Singh A, Gupta VK (2001) Isolation of insertional mutants in indica rice using Ds transposable element of maize. Rice Genet Newsl 18:98–99

    Google Scholar 

  • Gieffers C, Dube P, Harris JR, Stark H, Peters JM (2001) Three-dimensional structure of the anaphase-promoting complex. Mol Cell 7:907–913

    Article  CAS  PubMed  Google Scholar 

  • Harkness TAA, Shea KA, Legrand C, Brahmania M, Davis GF (2004) A functional analysis reveals dependence on the anaphase promoting complex for prolonged life span in yeast. Genetics 168:744–759

    Article  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70

    Article  CAS  PubMed  Google Scholar 

  • Johansen DA (1940) Plant micro technique. McGraw-Hill Book Co., New York, p 194

    Google Scholar 

  • Jung KH, An G, Ronald PC (2008) Towards a better bowl of rice: assigning function to tens of thousand of rice genes. Nat Rev Genet 9:91–101

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, An G (2003) Transgene structures in T-DNA-inserted rice. Plant Mol Biol 52:761–773

    Article  CAS  PubMed  Google Scholar 

  • Kwee HS, Sundaresan V (2003) The NOMEGA gene is required for female gametophyte development encodes the putative APC6/CDC16 component of the anaphase promoting complex in Arabidopsis. Plant J 36:853–866

    Article  CAS  PubMed  Google Scholar 

  • Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorty S, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large scale analysis of Ds flanking sequences. Plant J 37:301–314

    CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Kumar I, Singh TH (1984) A rapid method for identifying different dwarfing genes in rice. Rice Genet Newsl 1:135

    Google Scholar 

  • Lamb JR, Tugendreich S, Heiter PC (1995) Tetratricoppeptide repeat interactions: to TPR or not to TPR? TIBS 20:257–259

    CAS  PubMed  Google Scholar 

  • Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  CAS  PubMed  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  • Martin DN, Proebsting WM, Parks TD, Dougherty WG, Lange T, Lewis MJ, Gaskin P, Hedden P (1996) Feedback regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta 200:159–166

    Article  CAS  PubMed  Google Scholar 

  • Martienssen RA (1998) Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci USA 95:2021–2026

    Article  CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Belloni S, Marone D, De Leonardis AM, Guerra D, Fonzo ND, Cattivelli L, Mastrangelo AM (2006) The E3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics 7(8):509–522

    Article  CAS  PubMed  Google Scholar 

  • Milach SCK, Rines HW, Phillips RL (1997) Molecular genetic mapping of dwarfing genes in oat. Theor Appl Genet 95:783–790

    Article  CAS  Google Scholar 

  • Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16:3181–3195

    Article  CAS  PubMed  Google Scholar 

  • Murai M et al (2002) Effects of the dwarfing gene originating from ‘Dee-geo-woo-gen’ on yield and its related traits in rice. Breed Sci 52:95–100

    Article  Google Scholar 

  • Murase K, Hirano Y, T-p S, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Muskett PR, Clissold L, Marocco A, Springer PS, Martienssen R, Dean C (2003) A resource of mapped Dissociation launch pads for targeted insertional mutagenesis in the Arabidopsis genome. Plant Physiol 132:1–11

    Article  Google Scholar 

  • Park SH, Kim CM, Je B, Park SJ et al (2007) A Ds-insertion mutant of OSH6 (Oryza sativa Homeobox 6) exhibits outgrowth of vestigial leaf-like structures, bracts, in rice. Planta 227:1–12

    Article  CAS  PubMed  Google Scholar 

  • Pèrez-Pèrez JM, Serralbo O, Vanstraelen M, Gonza´lez C, Criqui M-C, Genschik P, Kondorosi E, Scheres B (2008) Specialization of CDC27 function in the Arabidopsis thaliana anaphase-promoting complex (APC/C). Plant J 53:78–89

    Article  PubMed  Google Scholar 

  • Puri A, Basha PO, Kumar M, Rajpurohit D, Randhawa GS, Kianian SF, Rishi A, Dhaliwal HS (2009) The polyembryo gene (OsPE) in rice. Funct Integr Genomics. doi:10.1007/s10142-009-0139-6

    PubMed  Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep 15:727–730

    Article  CAS  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Ito H, Kobayashi M, Kitano H, Matsuoka M (2001) Screenings of rice gibberellin-insensitive dwarf 1 mutants (GID1). In: 17th international conference on plant growth substances; July 1–6, 2001; Brno, Czech Republic

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18(4):992–1002

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Schwager K (2004) Regulated proteolysis and plant development. Plant Cell Rep 23:353–364

    Article  CAS  PubMed  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Miyako U-T, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M (2006) The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J 48:390–402

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kata H, Matsuoka M (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456:520–523

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Li B, Bharadwaj R, Zhu H, Ozkan E, Hakala K, Deisenhofer J, Yu H (2001) APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Mol Biol Cell 12:3839–3851

    CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Matsuoka M (2007) Gibberellin receptor and its role in Gibberellin signaling in plants. Annu Rev Plant Biol 58:183–198

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • Visarada KBRS, Sailaja M, Sharma NP (2002) Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Biol Plant 45:495–502

    Article  CAS  Google Scholar 

  • Wing RA, Luo M, Kim HYY, Kudrna D, Goicoechea J, Wang W, Nelson W, Rao K, Brar D, Mackill D, Han B, Soderlund C, Stein L, SanMiguel P, Jackson S (2005) The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 59:53–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Vajinder Kumar, Research Scholar, NRC on Plant Biotechnology, Indian Agricultural Research Institute, Pusa Campus, New Delhi and Tripta Jhang, Scientist at Central Institute of Medicinal and Aromatic Plants, Lucknow for assistance in the isolation of flanking sequences and in BLAST analysis. This research was funded by CSIR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harcharan Singh Dhaliwal.

Additional information

The nucleotide sequence reported in this paper has been submitted to Bankit (database no. 1164269; http://www.ncbi.nlm.nih.gov/BankIt) under accession numbers: FJ548927.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

Result of FST search for the candidate query gene NC_008396.1 in OrygeneDB database (DOC 47 kb)

Fig. S1

Comparative anatomy of Basmati 370 and OsAPC6 mutant. (a) LS of second internode in Basmati 370 and (b) OsAPC6, at 10× magnification. (c) TS of second internode in Basmati 370 and (d) OsAPC6, at 10× magnification. (e) TS of leaf–blade of fourth leaf in Basmati 370 and (f) OsAPC6, at 10× magnification (DOC 100 kb)

Fig. S2

Germination of OsAPC6 mutant and Basmati 370 on 80 ppm hygromycin solution (DOC 746 kb)

Fig. S3

TAIL-PCR products amplified from OsAPC6. Lane, M = 100-bp DNA ladder; I, II, and III: products of primary, secondary, and tertiary reactions with RB1, RB2, and RB3, respectively, using AD1, AD2, and AD3 primers (DOC 79 kb)

Fig. S4

Amplification with gene-specific primer and T-DNA-specific primers using different primer combinations in Basmati 370 and OsAPC6. M = 100-bp ladder: lanes 1–10, T-DNA-specific primer and gene-specific primer combinations; 1 DTF1 + RB1, 2 DTF1 + RB2, 3 DTF1 + RB3, 4 DTF2 + RB1, 5 DTF2 + RB2, 6 DTF2 + RB3, 7 DTF1 + DTR1, 8 DTF1 + DTR2, 9 DTF2 + DTR1, 10 DTF2 + DTR2. Lanes: M, 100-bp ladder. 1 OsAPC6, 2 = Basmati 370 (DOC 134 kb)

Fig. S5

Schematic representation of the T-DNA constructs HmR Ds that was used for Basmati 370 transformation. LB left border, RB right border, SPT streptomycin phosphotransferase, NPT neomycin phosphotransferase, HPT hygromycin phosphotransferase. NotI, HO nuclease, and Dpn/ClaI methylase: rare cutter sites within the T-DNA and within the Ds element. SacI is the unique restriction site in the construct (DOC 46 kb)

Fig. S6

Genomic sequence of the candidate gene (Os03g0236900) from O. sativa cv. Nipponbare between position 7,178,921–7,187,583 bp of chromosome 3 (black-colored base pairs in small letter are intronic and red-colored capital letter base pairs are exonic regions in the sequence; DOC 54 kb)

Fig. S7

Characteristics of protein sequence of APC6 in rice obtained from NCBI protein ID BAF11405. The protein is made up of 728-amino acid protein containing a conserved tetratricopeptide repeat (TPR) domain as indicated by stretch of black-colored letters. The 34-amino acid TPR domain consists of 12 copies of the TPR motif as indicated by blue-colored letters and 16 TPR binding sites as indicated by red-colored letters. The whole sequence consists of two TPR domain superfamily that are overlapping with each other as indicated by underlined and italics letter (DOC 38 kb)

Fig. S8

Phylogenetic rooted tree of 12 protein amino acid sequences showing homology to APC6 of O. sativa (NP_001049491, red box; DOC 180 kb)

Fig. S9

Multiple sequence alignment of APC6 protein in rice run under ClustalW against the human, Drosophila melanogaster, Ratus norvegicus, Saccharomyces cerevisae, and Mus musculus APC/Cdc16. The shaded boxed amino acids are the conserved region within the TPR domain among all the species (DOC 907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Basha, P.O., Puri, A. et al. A candidate gene OsAPC6 of anaphase-promoting complex of rice identified through T-DNA insertion. Funct Integr Genomics 10, 349–358 (2010). https://doi.org/10.1007/s10142-009-0155-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-009-0155-6

Keywords

Navigation