Skip to main content

Advertisement

Log in

The polyembryo gene (OsPE) in rice

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

T-DNA insertional mutagenesis is one of the most important approaches for gene discovery and cloning. A fertile polyembryo mutant generated by T-DNA/Ds insertion in Oryza sativa, cv. Basmati 370 showed twin or triple seedlings at a frequency of 15–20%. T-DNA insertion was confirmed by 950 bp hpt gene amplification in the promoter region of the candidate gene. The annotated protein corresponding to the OsPE candidate gene has been reported as a hypothetical protein in O. sativa. OsPE gene lacked functional homologs in other species. No OsPE paralog was found in rice. No conserved domains were found in the protein coded by OsPE. RT-PCR showed the expression of OsPE gene in Basmati 370 shoots. Full-length OsPE gene was cloned in Basmati 370. The combined use of Southern blot, genome walking, TAIL-PCR, RT-PCR techniques, and bioinformatics led to the identification of a candidate gene controlling the multiple embryos in rice. There is gain of function, i.e., multiple embryos in the seeds in the knockout mutant OsPE whereas its wild-type allele strictly controls single embryo per seed. The seeds with multiple embryos are distributed at random in the rice mutant panicle. The origin of multiple embryos, whether apomictic, zygotic or both is under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev, Genet 7:524–536

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–2047

    Article  CAS  PubMed  Google Scholar 

  • Bajic VB, Seah SH, Chong AG, Koh JL, Brusic Y (2002) Dragon promoter finder: recognition of vertebrate RNA polymerase II promoters. Bioinformatics 18:198–199

    Article  CAS  PubMed  Google Scholar 

  • Baker B, Schell J, Lorz H, Fedoroff N (1986) Transposition of the maize controlling element "Activator" in tobacco. Proc Natl Acad Sci USA 83:4844–4848

    Article  CAS  PubMed  Google Scholar 

  • Bhalla A, Osman Basha P, Kumar M, Singh K, Rajpurohit D, Randhawa GS, Dhaliwal HS (2009) Linkage mapping of polyembryonic, oligoculm and gibberellic acid insensitive dwarf insertional mutants of Oryza sativa var. Basmati 370. SABRAO J Breed Genet 41:13–23

    Google Scholar 

  • Burke TW, Kandonaga JT (1997) The downstream promoter element, DPE, is conserved from Drosphila to humans and recognized by TAFII60 of Drosophila. Genes Dev 11:3020–3031

    Article  CAS  PubMed  Google Scholar 

  • Delseny M, Salses J, Cooke R, Sallaud C, Regad F, Lagoda P, Guiderdoni E, Ventelon M, Brugidou C, Ghesquiere A (2001) Rice genomics: present and future. Plant Physiol Biochem 39:324–334

    Article  Google Scholar 

  • Dhaliwal HS, Das A, Singh A, Gupta VK (2001) Isolation of insertional mutants in indica rice using Ds transposable element of maize. Rice Genetics News Letter 18:98–99

    Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132

    Article  CAS  PubMed  Google Scholar 

  • Knudsen S (1999) Promoter 2.0: for the recognition of PolII promoter sequences. Bioinformatics 15:356–361

    Article  CAS  PubMed  Google Scholar 

  • Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorty S, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large scale analysis of Ds flanking sequences. Plant J 37:301–314

    CAS  PubMed  Google Scholar 

  • Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24

    Article  CAS  PubMed  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  • Lu YG, Liu XD (2002) A mutant for variable egg number in rice. Rice Genet Newsl 15:121–122

    Google Scholar 

  • McClean P (1998) Analyzing plant gene expression with transgenic plants. Online course topics NDSU, USA

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, van Dijk P (2007) Mendelian genetics of Apomixis in plants. Annu Rev Genet 41:509–537

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Marimuthu MPA, Siddiqi SI (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–1124

    Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–85

    CAS  Google Scholar 

  • Savidan Y (2001) Transfer of apomixis through wide crosses. In: Savidan Y, Carman J, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, Eur. Comm. DG VI (FAIR), Mexico, pp 153–167

    Google Scholar 

  • Shahmuradov I, Gammerman A, Hancock JM, Bramley PM, Solovyer VV (2005) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31:114–117

    Article  Google Scholar 

  • Small ST (1997) Transcription initiation from TATA-less promoters within eukaryotes protein-coding genes. Biochim Biophys Acta 1351:73–88

    Google Scholar 

  • White D, Chen W (2006) Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation. Curr Genet 49:272–280

    Article  CAS  PubMed  Google Scholar 

  • Wing RA, Luo M, Kim H, Yu Y, Kudrna D, Goicoechea J, Wang W, Nelson W, Rao K, Brar D, Mackill D, Han B, Soderlund C, Stein L, SanMiguel P, Jackson S (2005) The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 59:53–62

    Article  CAS  PubMed  Google Scholar 

  • Ximei D, Qunce I, Guoping L, Xiuming H, Guangyong Q, Zengliang Y (2006) Study of genetics and embryology of polyembryonic mutant of autotetraploid rice induced by N+ beam implantation. Plasma Sci and Tech 8:6–10

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Kuldeep Singh, PAU Ludhiana for providing rice SSRs for BSA. We also thank Dr. K. S. Gill, WSU for his thoughtful review and suggestions in improving this article. The financial assistance by CSIR (India) to A.B and NSF (USA) to S.K.F. and H. S. D. is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harcharan S. Dhaliwal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Germination of OsPE mutant and Basmati 370 on 80 ppm hygromycin solution. a Polyembryonic mutant b Basmati 370 (DOC 2922 kb)

Fig. S2

PCR amplification of 950 bp hpt fragment in insertional mutants Insertional Mutants (lanes 1,2,4); OsPE (lane 3); Basmati 370 (lane 5); lane M: molecular weight marker 1 Kb (DOC 48 kb)

Fig. S3

Schematic diagram of HmRDs construct used for insertional mutagenesis of Basmati 370 (DOC 32 kb)

Fig. S4

Meiosis in PMC of OsPE, a Diakinesis 12IIs; b Metaphase-I, 12IIs; c Telophase-I; d Tetrad stage (DOC 434 kb)

Fig. S5

T-DNA right border sequences with three T-RB nested primers in color (DOC 29 kb)

Fig. S6

Primers (DOC 33 kb)

Fig. S7

T-DNA flanking sequence using T-RB2 (T-DNA based primer) for OsPE mutant (DOC 29 kb)

Fig. S8

T-DNA flanking sequence using AP2 for OsPE mutant (DOC 29 kb)

Fig. S9

T-DNA flanking sequence using T-RB3 (Tertiary TAIL- PCR product) for OsPE mutant (DOC 29 kb)

Fig. S10

BLAST result of T-DNA flanking sequence using T-RB2 (Genome Walking PCR) showing 94% identity with rice cultivar Nipponbare at Chromosome 3 (DOC 30 kb)

Fig. S11

BLAST result of T-DNA flanking sequence using AP2 (Genome Walking PCR) showing 87% identity with rice cultivar Nipponbare at Chromosome 3 (DOC 31 kb)

Fig. S12

BLAST result of T-DNA flanking sequence using T-RB3 (TAIL-PCR) showing 92% identity with rice cultivar Nipponbare at Chromosome 3 (DOC 30 kb)

Fig. S13

Sequence of candidate gene OsPE including the promoter region in O. sativa cv. Nipponbare genomic DNA Chromosome 3 (DOC 33 kb)

Fig. S14

Diagrammatic representation of T-DNA insertion on chromosome 3 in Polyembryo mutant of Basmati 370 (DOC 35 kb)

Fig. S15

Diagrammatic representation of designing rice genome specific primers and expected product size in Polyembryony mutant of Basmati 370 (DOC 36 kb)

Fig. S16

Protein BLAST of O. sativa (Os03g0241300) with Arabidopsis, Z. mays, and V. vinifera (DOC 37 kb)

Table S1

Primer combination of rice genome specific and T-DNA specific PCR and expected product size in Basmati 370 and OsPE (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, A., Basha, P.O., Kumar, M. et al. The polyembryo gene (OsPE) in rice. Funct Integr Genomics 10, 359–366 (2010). https://doi.org/10.1007/s10142-009-0139-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-009-0139-6

Keywords

Navigation