Skip to main content

Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition

Abstract

The barley shrunken grain mutant M292 has a novel high-amylose starch phenotype caused by a mutation in the starch synthase IIa gene (SsIIa) located at the starch excess-6 (sex6) locus on chromosome 7H of barley. The loss of SSIIa enzyme activity leads to a decrease in amylopectin synthesis to less than 20% of the levels found in wild-type grains. Detailed composition analysis indicates that the contents of protein, non-starch polysaccharides, lipid, sucrose and hexoses, and fructo-oligosaccharides are increased in mature M292 grain compared to wild type. Using a microarray analysis, we characterize the differences between the transcription profiles of wild-type and mutant barley endosperms at mid-grain fill. The expression changes include genes involved in carbon storage, stress-related genes, and a number of transcripts with unassigned function. The changes in gene expression are discussed in terms of the altered grain composition of the mutant seed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Andon NL, Hollingworth S, Koller A, Greenland AJ, Yates JR, Haynes PA (2002) Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics 2:1156–1168

    PubMed  Article  CAS  Google Scholar 

  • Andrawis A, Solomon M, Delmer DP (1993) Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J 3:763–772

    PubMed  Article  CAS  Google Scholar 

  • Appels R, Dvorak J (1982) The wheat ribosomal DNA spacer region: its structure and variation in populations and among species. Theor Appl Genet 63:337–348

    Article  CAS  Google Scholar 

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233

    PubMed  Article  CAS  Google Scholar 

  • Balmer Y, Vensel WH, DuPont FM, Buchanan BB, Hurkman WJ (2006) Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J Exp Bot 57:1591–1602

    PubMed  Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases alpha and beta. In: Colowick S, Kaplan N (eds) Methods in enzymology. Academic, NY, p 149

    Chapter  Google Scholar 

  • Bird AR, Flory C, Davies DA, Usher S, Topping DL (2004a) A novel barley cultivar (Himalaya 292) with a specific gene mutation in starch synthase IIa raises large bowel starch and short chain fatty acids in rats. J Nutr 134:831–835

    PubMed  CAS  Google Scholar 

  • Bird AR, Jackson M, King RA, Davies DA, Usher S, Topping DL (2004b) A novel high amylose barley cultivar (Hordeum vulgare var. Himalaya 292) lowers plasma cholesterol and alters indices of large-bowel fermentation in pigs. Br J Nutr 92:607–615

    PubMed  Article  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol l32:191–222

    Article  Google Scholar 

  • Campbell JA, Hansen RW, Wilson JR (1999) Cost-effective colorimetric microtitre plate enzymatic assays for sucrose, glucose and fructose in sugarcane tissue extracts. J Sci Food Agric 79:232–236

    Article  CAS  Google Scholar 

  • Clarke B, Rahman S (2005) A microarray analysis of wheat grain hardness. Theor Appl Genet 110:1259–1267

    PubMed  Article  CAS  Google Scholar 

  • Clarke BC, Hobbs M, Skylas D, Appels R (2000) Genes active in developing wheat endosperm. Funct Integr Genomics 1:44–55

    PubMed  Article  CAS  Google Scholar 

  • da Silva PMFR, Eastmond PJ, Hill LM, Smith AM, Rawsthorne S (1997) Starch metabolism in developing embryos of oilseed rape. Planta 203:480–487

    Article  Google Scholar 

  • Davies C, Robinson SP (2000) Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiol 122:803–812

    PubMed  Article  CAS  Google Scholar 

  • Doehlert DC, Kuo TM (1994) Gene expression in developing kernels of some endosperm mutants of maize. Plant Cell Physiol 35:411–418

    CAS  Google Scholar 

  • Fincher GB, Stone BA (1986) Cell walls and their components in cereal grain technology. Adv Cereal Sci Technol 8:207–295

    CAS  Google Scholar 

  • Franco OL, Rigden DJ, Melo FR, Bloch JC, Silva CP, Grossi de Sa MF (2000) Activity of wheat alpha-amylase inhibitors towards bruchid alpha-amylases and structural explanation of observed specificities. Eur J Biochem 267:2166–2173

    PubMed  Article  CAS  Google Scholar 

  • Giroux MJ, Boyer C, Feix G, Hannah LC (1994) Coordinated transcriptional regulation of storage product genes in the maize endosperm. Plant Physiol 106:713–722

    PubMed  CAS  Google Scholar 

  • Guerin JR, Lance RCM, Wallace W (1992) Release and activation of barley beta-amylase by malt endopeptidases. J Cereal Sci 15:5–14

    CAS  Article  Google Scholar 

  • Harvey AJ, Hrmova M, Fincher GB (2001) Regulation of genes encoding β-D-gucan glucohydrolases in barley (Hordeum vulgare). Physiol Plant 113:108–120

    Article  CAS  Google Scholar 

  • Hrmova M, Fincher GB (2001) Structure–function relationships and β-d-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47:73–91

    PubMed  Article  CAS  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    PubMed  Article  CAS  Google Scholar 

  • Konarev AV (1996) Interaction of insect digestive enzymes with plant protein inhibitors and host-parasite co-evolution. Euphytica 92:89–94

    Article  CAS  Google Scholar 

  • Kossmann J, Lloyd J (2000) Understanding and influencing starch biochemistry. Crit Rev Plant Sci 19:171–226

    Article  CAS  Google Scholar 

  • Kumar A, Taylor MA, Mad Arif SA, Davies HV (1996) Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J 9:147–158

    Article  CAS  Google Scholar 

  • Laudencia-Chingcuanco DL, Stamova BS, You FM, Lazo GR, Beckles DM, Anderson OD (2007) Transcriptional profiling of wheat caryopsis development using cDNA microarrays. Plant Mol Biol 63:651–668

    PubMed  Article  CAS  Google Scholar 

  • Lunn JE, Hatch MD (1995) Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C4 plants. Planta 197:385–391

    Article  CAS  Google Scholar 

  • Merendino N, D’Aquino M, Molinari R, De Gara L, D’Egidio MG, Paradiso A, Cecchini C, Corradini C, Tomassi G (2006) Chemical characterization and biological effects of immature durum wheat in rats. J Cereal Sci 43:129–136

    Article  CAS  Google Scholar 

  • Millar HA, Sweetlove LJ, Giege P, Leaver CJ (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 127:1711–1727

    PubMed  Article  CAS  Google Scholar 

  • Morell MK, Rahman S, Regina A, Appels R, Li Z (2001) Wheat starch biosynthesis. Euphytica 119:55–58

    Article  CAS  Google Scholar 

  • Morell MK, Kosar-Hashemi B, Cmiel M, Samuel MS, Chandler P, Rahman S, Buleon A, Batey IL, Li Z (2003) Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J 34:173–185

    PubMed  Article  CAS  Google Scholar 

  • Morell MK, Li Z, Regina A, Rahman S, d’Hulst C, Ball SG (2006) Control of starch biosynthesis in vascular plants and algae. In: Plaxton WC, McManus MT (eds) Control of primary metabolism in plants. Annual Plant Reviews 22:258–289. Blackwell Publishing, Oxford, UK

    Google Scholar 

  • Myers AM, Morell MK, James MG, Ball SG (2000) Recent progress towards understanding the amylopectin crystal. Plant Physiol 122:989–997

    PubMed  Article  CAS  Google Scholar 

  • Nijtmans LGJ, de Jong L, Sanz MA, Coates PJ, Berden JA, Back JW, Muijsers AO, van der Spek H, Grivell LA (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of the mitochondrial proteins. EMBO J 19:2444–2451

    PubMed  Article  CAS  Google Scholar 

  • Ohdan T, Francisco PB Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244

    PubMed  Article  CAS  Google Scholar 

  • Østergaard H, Rasmussen SK, Roberts TH, Hejgaard J (2000) Inhibitory serpins from wheat with reactive centers resembling glutamine-rich repeats of prolamin storage proteins. J Biol Chem 275:33272–33279

    PubMed  Article  Google Scholar 

  • Poole R, Barker G, Wilson ID, Coghill JA, Edwards KJ (2007) Measuring global gene expression in polyploidy; a cautionary note from allohexaploid wheat. Funct Integr Genomics 7:207–219

    PubMed  Article  CAS  Google Scholar 

  • Prosky L, Asp N-G, Furda I, DeVries JW, Schweizer TF, Harland BF (1985) Determination of total dietary fibre in foods and food product: collaborative study. J Assoc Off Agric Chem 68:677

    CAS  Google Scholar 

  • RACI (2003) Official testing methods of the Cereal Chemistry Division of the Royal Australian Chemical Institute, Method 02-03. Dumas (combustion) total nitrogen determination

  • Rahman S, Li Z, Batey I, Cochrane MP, Appels R, Morell MK (2000) Genetic alteration of starch functionality in wheat. J Cereal Sci 31:91–110

    Article  CAS  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    PubMed  Article  CAS  Google Scholar 

  • Ruuska S, Rebetzke G, van Herwaarden A, Richards RA, Fettell N, Tabe L, Jenkins CLD (2006) Genotypic variation in water-soluble carbohydrate accumulation in wheat. Funct Plant Biol 33:799–809

    Article  CAS  Google Scholar 

  • Schulman AH, Tomooka S, Suzuki A, Myllarinen P, Hizukuri S (1995) Structural analysis of starch from normal and shx (shrunken endosperm) barley (Hordeum vulgare L.). Carbohydr Res 275:361–369

    Article  CAS  Google Scholar 

  • Shin H, Brown RM Jr (1999) GTPase Activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol 119:925–934

    PubMed  Article  CAS  Google Scholar 

  • Smith AM (2001) The biosynthesis of starch granules. Biomacromolecules 2:335–341

    PubMed  Article  CAS  Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    PubMed  Article  CAS  Google Scholar 

  • Theander O, Aman P, Westerlund E, Andersson R, Pettersson D (1995) Total dietary fibre determined as neutral sugar residues, uronic acid residues and Klason lignin (the Uppsala method). J AOAC Int 78:1030–1044

    PubMed  CAS  Google Scholar 

  • Topping DL, Morell KM, King RA, Li Z, Bird AR, Noakes M (2003) Resistant starch and health—Himalaya 292, a novel barley cultivar to deliver benefits to consumers. Starke 55:539–545

    Article  CAS  Google Scholar 

  • Tsuchiya K, Urahara T, Konishi T, Kotake T, Tohno-oka T, Komae K, Kawada N, Tsumuraya Y (2005) Biosynthesis of (1-3),(1-4)-β-glucan in developing endosperms of barley (Hordeum vulgare). Physiol Plant 125:181–191

    Article  CAS  Google Scholar 

  • Whetten R, Sun Y-H, Zhang E, Sederoff R (2001) Functional genomics and cell wall biosynthesis in loblolly pine. Plant Mol Biol 47:275–291

    PubMed  Article  CAS  Google Scholar 

  • Wilson DL, Buckley MJ, Helliwell CA, Wilson IW (2003) New normalisation methods for cDNA microarray data. Bioinformatics 19:1325–1332

    PubMed  Article  CAS  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67

    Article  CAS  Google Scholar 

  • Wobus U, Sreenivasulu N, Borisjuk L, Rolletschek H, Panitz R, Gubatz S, Weschke W (2004) Molecular physiology and genomics of developing barley grains. Recent Res Dev Plant Mol Biol 2:1–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Clarke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clarke, B., Liang, R., Morell, M.K. et al. Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Funct Integr Genomics 8, 211–221 (2008). https://doi.org/10.1007/s10142-007-0070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-007-0070-7

Keywords

  • Barley
  • Endosperm
  • Microarray
  • SsIIa mutant