Functional & Integrative Genomics

, Volume 6, Issue 3, pp 202–211 | Cite as

An atlas of gene expression from seed to seed through barley development

  • Arnis Druka
  • Gary Muehlbauer
  • Ilze Druka
  • Rico Caldo
  • Ute Baumann
  • Nils Rostoks
  • Andreas Schreiber
  • Roger Wise
  • Timothy Close
  • Andris Kleinhofs
  • Andreas Graner
  • Alan Schulman
  • Peter Langridge
  • Kazuhiro Sato
  • Patrick Hayes
  • Jim McNicol
  • David Marshall
  • Robbie Waugh
Original Paper

Abstract

Assaying relative and absolute levels of gene expression in a diverse series of tissues is a central step in the process of characterizing gene function and a necessary component of almost all publications describing individual genes or gene family members. However, throughout the literature, such studies lack consistency in genotype, tissues analyzed, and growth conditions applied, and, as a result, the body of information that is currently assembled is fragmented and difficult to compare between different studies. The development of a comprehensive platform for assaying gene expression that is available to the entire research community provides a major opportunity to assess whole biological systems in a single experiment. It also integrates detailed knowledge and information on individual genes into a unified framework that provides both context and resource to explore their contributions in a broader biological system. We have established a data set that describes the expression of 21,439 barley genes in 15 tissues sampled throughout the development of the barley cv. Morex grown under highly controlled conditions. Rather than attempting to address a specific biological question, our experiment was designed to provide a reference gene expression data set for barley researchers; a gene expression atlas and a comparative data set for those investigating genes or regulatory networks in other plant species. In this paper we describe the tissues sampled and their transcriptomes, and provide summary information on genes that are either specifically expressed in certain tissues or show correlated expression patterns across all 15 tissue samples. Using specific examples and an online tutorial, we describe how the data set can be interrogated for patterns and levels of barley gene expression and how the resulting information can be used to generate and/or test specific biological hypotheses.

Keywords

Barley Development Gene expression 

References

  1. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960CrossRefPubMedGoogle Scholar
  2. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet 29:365–371CrossRefPubMedGoogle Scholar
  3. Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514–2528CrossRefPubMedGoogle Scholar
  4. Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123CrossRefPubMedGoogle Scholar
  5. Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–2785CrossRefPubMedGoogle Scholar
  6. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574CrossRefPubMedGoogle Scholar
  7. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677CrossRefPubMedGoogle Scholar
  8. Cho Y, Fernandes J, Kim S-H, Walbot V (2002) Gene-expression profile comparisons distinguish seven organs of maize. Genome Biol 3:1–16CrossRefGoogle Scholar
  9. Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968CrossRefPubMedGoogle Scholar
  10. Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbuhl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci U S A 100:4945–4950CrossRefPubMedGoogle Scholar
  11. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17CrossRefPubMedGoogle Scholar
  12. Drea S, Leader DJ, Arnold B, Shaw P, Dolan L, Doonan JH (2005) Systematic spatial analysis of gene expression during wheat caryopsis development. Plant Cell 17:2172–2185CrossRefPubMedGoogle Scholar
  13. Dudoit S, Fridlyand J (2003) Rules classification in microarray experiments. In: Speed T (ed) Statistical analysis of gene expression. Chapman & Hall/CRC, pp 93–158Google Scholar
  14. Ferreira PC, Hemerly AS, Van Montagu M, Inze D (1993) A protein phosphatase 1 from Arabidopsis thaliana restores temperature sensitivity of a Schizosaccharomyces pombe cdc25ts/wee1-double mutant. Plant J 4:81–87CrossRefPubMedGoogle Scholar
  15. Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334CrossRefPubMedGoogle Scholar
  16. Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433:481–487CrossRefPubMedGoogle Scholar
  17. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113CrossRefPubMedGoogle Scholar
  18. Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9:1106–1115CrossRefPubMedGoogle Scholar
  19. Hunter BG, Beatty MK, Singletary GW, Hamaker BR, Dilkes BP, Larkins BA, Jung R (2002) Maize opaque endosperm mutations create extensive changes in patterns of gene expression. Plant Cell 14:2591–2612CrossRefPubMedGoogle Scholar
  20. Ibrahim AF, Hedley PE, Cardle L, Kruger W, Marshall DF, Muehlbauer GJ, Waugh R (2005) A comparative analysis of transcript abundance using SAGE and Affymetrix arrays. Funct Integr Genomics 5:163–174CrossRefPubMedGoogle Scholar
  21. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32:241–254CrossRefPubMedGoogle Scholar
  22. Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615CrossRefPubMedGoogle Scholar
  23. Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770CrossRefPubMedGoogle Scholar
  24. Liu CM, Meinke DW (1998) The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J 16:21–31CrossRefPubMedGoogle Scholar
  25. Liu CM, McElver J, Tzafrir I, Joosen R, Wittich P, Patton D, Van Lammeren AA, Meinke D (2002) Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J 29:405–415CrossRefGoogle Scholar
  26. Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126:469–481PubMedGoogle Scholar
  27. Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ (1996) Diversification of C-function activity in maize flower development. Science 274:1537–1540CrossRefPubMedGoogle Scholar
  28. Menges M, Hennig L, Gruissem W, Murray JA (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002CrossRefPubMedGoogle Scholar
  29. Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol 130:720–728CrossRefPubMedGoogle Scholar
  30. Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, Coulson R, Farne A, Lara GG, Holloway E, Kapushesky M, Lilja P, Mukherjee G, Oezcimen A, Rayner T, Rocca-Serra P, Sharma A, Sansone S, Brazma A (2005) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 33:D553–D555 (Database issue)CrossRefPubMedGoogle Scholar
  31. Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120CrossRefPubMedGoogle Scholar
  32. Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206CrossRefPubMedGoogle Scholar
  33. Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130:6001–6012CrossRefPubMedGoogle Scholar
  34. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5):501–506CrossRefPubMedGoogle Scholar
  35. Schmitz J, Franzen R, Ngyuen TH, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W (2000) Cloning, mapping and expression analysis of barley MADS-box genes. Plant Mol Biol 42:899–913CrossRefPubMedGoogle Scholar
  36. Shen L, Gong J, Caldo RA, Nettleton D, Cook D, Wise RP, Dickerson JA (2005) BarleyBase—an expression profiling database for plant genomics. Nucleic Acids Res 33:D614–D618 (Database issue)CrossRefPubMedGoogle Scholar
  37. Singer T, Yordan C, Martienssen RA (2001) Robertson’s mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1). Genes Dev 15:591–602CrossRefPubMedGoogle Scholar
  38. Springer PS, McCombie WR, Sundaresan V, Martienssen RA (1995) Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science 268:877–880CrossRefPubMedGoogle Scholar
  39. Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, Lowe KS, Jung R, Gordon-Kamm WJ, Larkins BA (1999) Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc Natl Acad Sci U S A 96:4180–4185CrossRefPubMedGoogle Scholar
  40. Tzafrir I, McElver JA, Liu Cm CM, Yang LJ, Wu JQ, Martinez A, Patton DA, Meinke DW (2002) Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol 128:38–51CrossRefPubMedGoogle Scholar
  41. Wang A, Xia Q, Xie W, Datla R, Selvaraj G (2003) The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. Proc Natl Acad Sci U S A 100:14487–14492CrossRefPubMedGoogle Scholar
  42. Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY, Teytelman L, Schmidt SC, Zhao W, Chang K, Cartinhour S, Stein LD, McCouch SR (2002) Gramene, a tool for grass genomics. Plant Physiol 130:1606–1613CrossRefPubMedGoogle Scholar
  43. Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16:1314–1326CrossRefPubMedGoogle Scholar
  44. Wittkopp PJ, Haerum BK, Clark AG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430:85–88CrossRefPubMedGoogle Scholar
  45. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39CrossRefPubMedGoogle Scholar
  46. Zhu T, Budworth P, Chen W, Provart NJ, Chang HS, Guimil S, Wenpei Su, Estes B, Zou G, Wang X (2003) Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnol J 1:59–70CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Arnis Druka
    • 1
  • Gary Muehlbauer
    • 2
  • Ilze Druka
    • 1
  • Rico Caldo
    • 3
    • 4
  • Ute Baumann
    • 5
  • Nils Rostoks
    • 1
  • Andreas Schreiber
    • 5
  • Roger Wise
    • 3
    • 4
    • 6
  • Timothy Close
    • 7
  • Andris Kleinhofs
    • 8
    • 9
  • Andreas Graner
    • 10
  • Alan Schulman
    • 11
    • 12
  • Peter Langridge
    • 5
  • Kazuhiro Sato
    • 13
  • Patrick Hayes
    • 14
  • Jim McNicol
    • 15
  • David Marshall
    • 1
  • Robbie Waugh
    • 1
  1. 1.Scottish Crop Research InstituteScotlandUK
  2. 2.Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt PaulUSA
  3. 3.Department of Plant PathologyIowa State UniversityAmesUSA
  4. 4.Center for Plant Responses to Environmental StressesIowa State UniversityAmesUSA
  5. 5.University of Adelaide, Plant ScienceGlen OsmondAustralia
  6. 6.Corn Insects and Crop Genetics Research, USDA-ARSIowa State UniversityAmesUSA
  7. 7.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  8. 8.Department of Crop and Soil SciencesWashington State UniversityPullmanUSA
  9. 9.Department of Genetics and Cell BiologyWashington State UniversityPullmanUSA
  10. 10.Institut für Pflanzengenetik und KulturpflanzenforschungGaterslebenGermany
  11. 11.MTT/BI Plant Genomics LaboratoryUniversity of HelsinkiHelsinkiFinland
  12. 12.MTT Agrifood Research FinlandHelsinkiFinland
  13. 13.Research Institute for BioresourcesOkayama UniversityKurashikiJapan
  14. 14.Department of Crop and Soil ScienceOregon State UniversityCorvallisUSA
  15. 15.BioSS Office, Scottish Crop Research InstituteScotlandUK

Personalised recommendations