Skip to main content
Log in

Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The whole genome expression pattern of Arabidopsis in response to the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated using the Affymetrix ATH1-121501 array. Arabidopsis plants were grown in vitro and were exposed to 1 mM 2,4-D for 1 h, after which time gene transcription levels were measured. In response to the treatment 148 genes showed increased levels of transcription and concurrently 85 genes showed decreased levels of transcript. Genes which showed significant change in transcription levels belonged to the following functional categories: transcription, metabolism, cellular communication and signal transduction, subcellular localisation, transport facilitation, protein fate, protein with binding function or cofactor requirement and regulation of/interaction with cellular environment. Interestingly 25.3% of the genes regulated by the treatment could not be classified into a known functional category. The data obtained from these experiments were used to assess the current model of auxinic herbicide action and indicated that 2,4-D not only modulates the expression of auxin, ethylene and abscisic acid (ABA) pathways but also regulates a wide variety of other cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  CAS  PubMed  Google Scholar 

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  CAS  PubMed  Google Scholar 

  • Affymetrix (2002) Technical note: statistical algorithms description document. Affymetrix, Santa Clara, Calif.

    Google Scholar 

  • Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:504–513

    Article  CAS  PubMed  Google Scholar 

  • Biesgen C, Weiler EW (1999) Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from Arabidopsis thaliana. Planta 208:155–165

    Article  CAS  PubMed  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol J 1:3–22

    Article  CAS  Google Scholar 

  • Chang C, Schaller GE, Patterson SE, Kwok SF, Meyerowitz EM, Bleecker AB (1992) The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Plant Cell 4:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Chu CC, Zentella R, Pan SM, Ho TH (2002) AtHVA22 gene family in Arabidopsis: phylogenetic relationship, ABA and stress regulation, and tissue-specific expression. Plant Mol Biol 49:633–644

    CAS  PubMed  Google Scholar 

  • Cheong, YH, Chang HS et al (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129(2):661–677

    CAS  PubMed  Google Scholar 

  • Cho HS, Pai HS (2000) Cloning and characterization of ntTMK1 gene encoding a TMK1-homologous receptor-like kinase in tobacco. Mol Cells 10:317–324

    CAS  PubMed  Google Scholar 

  • Cobb A (1992) Auxin-type herbicides. In: Herbicides and plant physiology. Chapman & Hall, London

    Google Scholar 

  • Cutler AJ, Krochko JE (1999) Formation and breakdown of ABA. Trends Plant Sci 4:472–478

    Article  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signalling complexes. J Biol Chem 23:23

    Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  CAS  PubMed  Google Scholar 

  • Goujon T, Minic Z, El Amrani A, Lerouxel O, Aletti E, Lapierre C, Joseleau JP, Jouanin L (2003) AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant J 33:677–690

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K (1996) A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol Plant 97(4):772–775

    Article  CAS  Google Scholar 

  • Grossmann K (1998) Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci 46:707–716

    CAS  Google Scholar 

  • Grossmann K (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K, Hansen H (2001) Ethylene-triggered abscisic acid: a principle in plant growth regulation? Physiol Plant 113:9–14

    Article  CAS  Google Scholar 

  • Hagen G, Guilfoyle TJ (1985) Rapid induction of selective transcription by auxins. Mol Cell Biol 5:1197–1203

    CAS  PubMed  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci 115:4891–4900

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signalling in Arabidopsis. Plant J 33:221–233

    Article  CAS  PubMed  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signalling. Plant Cell 14:343–357

    Article  CAS  PubMed  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Oh HS, Cheon CI, Hwang IT, Kim YJ, Chun JY (2001) Structure and expression of the Arabidopsis thaliana homeobox gene Athb-12. Biochem Biophys Res Commun 284:133–141

    Article  CAS  PubMed  Google Scholar 

  • Liechti R, Farmer EE (2003) The jasmonate signalling pathway in Arabidopsis. Sci STKE 2003:CM17

    Google Scholar 

  • Mahalingam R, Wang G, Knap HT (1999) Polygalacturonase and polygalacturonase inhibitor protein: gene isolation and transcription in Glycine max-Heterodera glycines interactions. Mol Plant Microbe Interact 12:490–498

    CAS  PubMed  Google Scholar 

  • Maughan JA, Nugent JH, Hallahan DL (1997) Expression of CYP71B7, a cytochrome P450 expressed sequence tag from Arabidopsis thaliana. Arch Biochem Biophys 341:104–111

    Article  CAS  PubMed  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  CAS  PubMed  Google Scholar 

  • Mikami K, Katagiri T, Iuchi S, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J 15:563–568

    Article  CAS  PubMed  Google Scholar 

  • Mussig C, Fischer S, Altmann T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Nibbe M, Hilpert B, Wasternack C, Miersch O, Apel K (2002) Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes. Planta 216:120–128

    Article  CAS  PubMed  Google Scholar 

  • Oh SA, Lee SY, Chung IK, Lee CH, Nam HG (1996) A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30:739–754

    CAS  PubMed  Google Scholar 

  • Pic E, de La Serve BT, Tardieu F, Turc O (2002) Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. Plant Physiol 128:236–246

    Article  CAS  PubMed  Google Scholar 

  • Poovaiah BW, Reddy AS (1993) Calcium and signal transduction in plants. CRC Crit Rev Plant Sci 12:185–211

    Google Scholar 

  • Prade L, Huber R, Bieseler B (1998) Structures of herbicides in complex with their detoxifying enzyme glutathione S-transferase—explanations for the selectivity of the enzyme in plants. Structure 6:1445–1452

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Zeevaart JA (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361

    Article  CAS  PubMed  Google Scholar 

  • Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6:420–425

    Article  CAS  PubMed  Google Scholar 

  • Reimmann C, Dudler R (1993) Circadian rhythmicity in the expression of a novel light-regulated rice gene. Plant Mol Biol 22:165–170

    CAS  PubMed  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Rouse DT, Marotta R, Parish RW (1996) Promoter and expression studies on an Arabidopsis thaliana dehydrin gene. FEBS Lett 381:252–256

    Article  CAS  PubMed  Google Scholar 

  • Ruffet ML, Lebrun M, Droux M, Douce R (1995) Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform. Eur J Biochem 227:500–509

    CAS  PubMed  Google Scholar 

  • Schaller F, Weiler EW (1997) Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signalling pathway from Arabidopsis thaliana. Structural and functional relationship to yeast old yellow enzyme. J Biol Chem 272:28066–28072

    Article  CAS  PubMed  Google Scholar 

  • Schaller F, Biesgen C, Mussig C, Altmann T, Weiler EW (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979–984

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  CAS  PubMed  Google Scholar 

  • Sterling TM, Hall JC (1997) Mechanism of action of natural auxins and the auxinic herbicides. In: Roe RM, Burton JD, Kuhr RJ (eds) Herbicide activity: toxicology, biochemistry and molecular biology. IOS, Amsterdam, pp 111–141

    Google Scholar 

  • Tarantino D, Petit JM, Lobreaux S, Briat JF, Soave C, Murgia I (2003) Differential involvement of the IDRS cis-element in the developmental and environmental regulation of the AtFer1 ferritin gene from Arabidopsis. Planta 217:709–716

    Article  CAS  PubMed  Google Scholar 

  • Teakle GR, Manfield IW, Graham JF, Gilmartin PM (2002) Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics. Plant Mol Biol 50:43–57

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  CAS  PubMed  Google Scholar 

  • Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–123

    Article  CAS  PubMed  Google Scholar 

  • Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119:521–530

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Campbell P, Vargheese AK, Braam J (1996) The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant J 9:879–889

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2000) Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein. Biochem Biophys Res Commun 275:601–607

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Nanjo T, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Stress-responsive and developmental regulation of Delta(1)-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem Biophys Res Commun 261:766–772

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Hall C (2001) Understanding auxinic herbicide resistance in wild mustard: physiology, biochemical, and molecular genetic approaches. Weed Sci 49:276–281

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Nufarm and an RMIT VRI grant university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor W. Stevenson.

Additional information

Experiment station: Plant Biotechnology Centre, Primary Industries Research Victoria, Department of Primary Industries, La Trobe University, Bundoora, Vic. 3086, and the Victorian Microarray Technology Consortium VMTC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavan, C., Ong, E.K., Dalling, M.J. et al. Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 5, 4–17 (2005). https://doi.org/10.1007/s10142-004-0119-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-004-0119-9

Keywords

Navigation