Skip to main content
Log in

Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Because of polyploidy and large genome size, deletion stocks of bread wheat are an ideal material for physically allocating ESTs and genes to small chromosomal regions for targeted mapping. To enhance the utility of deletion stocks for chromosome bin mapping, we characterized a set of 84 deletion lines covering the 21 chromosomes of wheat using 725 microsatellites. We localized these microsatellite loci to 94 breakpoints in a homozygous state (88 distal deletions, 6 interstitial), and 5 in a heterozygous state representing 159 deletion bins. Chromosomes from homoeologous groups 2 and 5 were the best covered (126 and 125 microsatellites, respectively) while the coverage for group 4 was lower (80 microsatellites). We assigned at least one microsatellite in up to 92% of the bins (mean 4.97 SSR/bin). Only a few discrepancies concerning marker order were observed. The cytogenetic maps revealed small genetic distances over large physical regions around the centromeres and large genetic to physical map ratios close to the telomeres. As SSRs are the markers of choice for many genetic and breeding studies, the mapped microsatellite loci will be useful not only for deletion stock verifications but also for allocating associated QTLs to deletion bins where numerous ESTs that could be potential candidate genes are currently assigned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    CAS  PubMed  Google Scholar 

  • Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L. em. Thell. and comparison with a map from a wide cross. Theor Appl Genet 94:367–377

    Article  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD et al. (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    CAS  Google Scholar 

  • Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995a) Cytologically based physical maps of the group-2 chromosomes of wheat. Theor Appl Genet 91:568–573

    CAS  Google Scholar 

  • Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995b) Cytologically based physical maps of the group 3 chromosomes of wheat. Theor Appl Genet 91:780–782

    CAS  Google Scholar 

  • Devos KM, Gale MD (1993) The genetic maps of wheat and their potential in plant breeding. Outlook Agric 22:93–99

    Google Scholar 

  • Dvorák J, Chen DK (1984) Distribution of nonstructural variation between wheat cultivars along chromosome arm 6Bp: evidence from the linkage map and physical map of the arm. Genetics 106:325–333

    Google Scholar 

  • Ellegren H, Primmer CR, Sheldon BC (1995) Microsatellite ‘evolution’: directionality or bias ? Nat Genet 11:360–362

    CAS  PubMed  Google Scholar 

  • Endo TR (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J Hered 79:366–370

    Google Scholar 

  • Endo TR, Gill (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powel W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    CAS  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    CAS  PubMed  Google Scholar 

  • Fox ME, Virgin JB, Metzger J, Smith GR (1997) Position and orientation-independent activity of the Schizosaccharomyces pombe meiotic recombination hot spot M26. Proc Natl Acad Sci USA 94:7446–7451

    CAS  PubMed  Google Scholar 

  • Gandon B, Cerrutti L, Chiquet V, Cadalen T, Sourdille P et al (2002) Development of microsatellite markers from database-annotated-EST sequences in wheat. In: Plant, animal & microbe genomes X, final abstracts guide. Applied Biosystems, Foster City, Calif., p 125

  • Gill KS, Gill BS (1993) Mapping in the realm of polyploidy: the wheat model. BioEssays 16:841–846

    Google Scholar 

  • Gill KS, Gill BS, Endo TR (1993a) A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102:374–381

    CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Mukai Y (1993b) Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134:1231–1236

    CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    CAS  PubMed  Google Scholar 

  • Groos C, Gay G, Perretant MR, Gervais L, Bernard M et al (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread wheat cross. Theor Appl Genet 104:39–47

    CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat. Theor Appl Genet 104:1164–1172

    CAS  Google Scholar 

  • Hohmann U, Endo TR, Herrmann RG, Gill BS (1995a) Characterization of deletions in common wheat induced by an Aegilops cylindrica chromosome: detection of multiple chromosome rearrangements. Theor Appl Genet 91:611–617

    CAS  Google Scholar 

  • Hohmann U, Graner A, Endo TR, Gill BS, Herrmann RG (1995b) Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theor Appl Genet 91:618–626

    CAS  Google Scholar 

  • Kam-Morgan LNW, Gill BS, Muthukrishnan S (1989) DNA restriction fragment length polymorphisms: a strategy for genetic mapping of the D-genome of wheat. Genome 32:724–732

    CAS  Google Scholar 

  • Kojima T, Habu Y, Iida S, Ogihara Y (2000) Direct isolation of differentially expressed genes from a specific chromosome region of common wheat: application of the amplified fragment length polymorphism-based mRNA fingerprinting (AMF) method in combination with a deletion line of wheat. Mol Gen Genet 263:635–641

    CAS  PubMed  Google Scholar 

  • Kota RS, Gill KS, Gill BS (1993) A cytogenetically based physical map of chromosome 1B in common wheat. Genome 36:548–554

    CAS  Google Scholar 

  • Kruglyak S, Durret RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tsunewaki K (1991) Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633

    CAS  PubMed  Google Scholar 

  • Ma XF, Ross K, Gustafson JP (2001) Physical mapping of restriction fragment length polymorphism (RFLP) markers in homoeologous groups 1 and 3 chromosomes of wheat by in situ hybridization. Genome 44:401–412

    CAS  PubMed  Google Scholar 

  • Marino CL, Nelson JC, Lu YH, Sorrels ME, Leroy P et al (1996) RFLP-based linkage maps of the homoeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366

    CAS  Google Scholar 

  • Messmer MM, Keller M, Zanetti S, Keller B (1999) Genetic linkage map of a wheat × spelt cross. Theor Appl Genet 98:1163–1170

    CAS  Google Scholar 

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    CAS  Google Scholar 

  • Mizuno K, Emura Y, Baur M, Kohli J, Ohta K et al (1997) The meiotic recombination hot spot created by the single-base substitution ade6-M26 results in remodelling of chromatin structure in fission yeast. Genes Dev 11:876–886

    CAS  PubMed  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrels ME, Lu YH et al (1995a) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrels ME, Lu YH et al (1995b) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533

    CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrels ME, Lu YH et al (1995c) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5 and 7. Genetics 141:721–731

    CAS  PubMed  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW et al (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    CAS  Google Scholar 

  • Plaschke J, Ganal M, Röder M (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  Google Scholar 

  • Qi LL, Echalier B, Friebe B, Gill B (2002) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    PubMed  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrels ME et al (1995) Abundance, variability and chromosomal location of microsatellite in wheat. Mol Gen Genet 246:327–333

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH et al (1998a) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Röder MS, Korsun V, Gill BS, Ganal MW (1998b) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Mol Biol 5:69–76

    CAS  Google Scholar 

  • Sarma RN, Gill BS, Sasaki T, Galiba G, Sutka J et al (1998) Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet 97:103–109

    CAS  Google Scholar 

  • Sarma RN, Fish L, Gill BS, Snape JW (2000) Physical characterization of the homoeologous group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. Genome 43:191–198

    Article  CAS  PubMed  Google Scholar 

  • Schlötterer C, Ritter R, Harr B, Brem G (1998) High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol Biol Evol 15:1269–1274

    PubMed  Google Scholar 

  • Schnable PS, Hsia AP, Nikolau BJ (1998) Genetic recombination in plants. Curr Opin Plant Biol 1(2):123–129

    CAS  PubMed  Google Scholar 

  • Smith GR (1994) Hot spots of homologous recombination. Experientia 50:234–242

    CAS  PubMed  Google Scholar 

  • Sourdille P, Guyomarc’h H, Baron C, Gandon B, Chiquet V et al (2001a) Improvement of the genetic maps of wheat using new microsatellite markers. Plant & animal genome IX, final abstracts guide. Applied Biosystems Press, Foster City, Calif., p 167

  • Sourdille P, Tavaud M, Charmet G, Bernard M (2001b) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352

    CAS  Google Scholar 

  • Stephenson P, Bryan G, Kirby J, Collins A, Devos KM et al (1998) Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97:946–949

    Article  CAS  Google Scholar 

  • Tixier MH, Sourdille P, Röder M, Leroy P, Bernard M (1997) Detection of wheat microsatellites using a non radioactive silver-nitrate staining method. J Genet Breed 51:175–177

    CAS  Google Scholar 

  • Tsujimoto H, Usami N, Hasegawa K, Yamada T, Nagaki K et al (1999) De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes. Mol Gen Genet 262:851–856

    CAS  PubMed  Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME et al (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    Google Scholar 

  • Weng Y, Tuleen NA, Hart GE (2000) Extended physical maps and a consensus physical map of the homoeologous group-6 chromosomes of wheat (Triticum aestivum L. em Thell). Theor Appl Genet 100:519–527

    CAS  Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311

    CAS  PubMed  Google Scholar 

  • Wierdl M, Dominska M, Petes TD (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146:769–779

    CAS  PubMed  Google Scholar 

  • Zhang H, Nasuda S, Endo TR (2000) Identification of AFLP markers on the satellite region of chromosome 1BS in wheat. Genome 43:729–735

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Béatrice Maître, Cécile Baron, Nadine Duranton and Alain Loussert for excellent technical assistance and Dr. Marion Röder for providing part of the microsatellites. This work was supported by Génoplante the French joint program in plant genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bernard.

Additional information

The first two authors contributed equally to the manuscript

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sourdille, P., Singh, S., Cadalen, T. et al. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4, 12–25 (2004). https://doi.org/10.1007/s10142-004-0106-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-004-0106-1

Keywords

Navigation