Skip to main content
Log in

Integrated analysis of yeast regulatory sequences for biologically linked clusters of genes

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Dramatic progress in deciphering the regulatory controls in Saccharomyces cerevisiae has been enabled by the fusion of high-throughput genomics technologies with advanced sequence analysis algorithms. Sets of genes likely to function together and with similar expression profiles have been identified in diverse studies. By fusing an advanced pattern recognition algorithm for identification of transcription factor binding sites with a new method for the quantitative comparison of binding properties of transcription factors, we provide an integrated means to move from expression data to biological insights. The Yeast Regulatory Sequence Analysis system, YRSA, combines standard functions with a novel pattern characterization procedure in an intuitive interface designed for use by a broad range of scientists. The features of the system include automated retrieval of user-defined promoter sequences, binding site discovery by pattern recognition, graphical displays of the observed pattern and positions of similar sequences in the specified genes, and comparison of the new pattern against a collection of binding patterns for characterized transcription factors. The comprehensive YRSA system was used to study the regulatory mechanisms of yeast regulons. Analysis of the regulatory controls of a battery of genes induced by DNA damaging agents supports a putative mediating role for the cell-cycle checkpoint regulatory element MCB. YRSA is available at http://yrsa.cgb.ki.se. [YRSA: ancient Scandinavian name meaning old she-bear (Latin Ursus arctos = brown bear/grizzly).]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3A, B.
Fig. 4A–D.

Similar content being viewed by others

References

  • Altschul SF, et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Blanchette M, Sinha S (2001) Separating real motifs from their artifacts. Bioinformatics 17 Suppl 1:S30–S38

    Google Scholar 

  • Brazma A, et al (1998) Approaches to the automatic discovery of patterns in biosequences. J Comput Biol 5:279–305

    CAS  PubMed  Google Scholar 

  • Bussemaker HJ, et al (2001) Regulatory element detection using correlation with expression. Nat Genet 27:167–171

    CAS  PubMed  Google Scholar 

  • Chiang DY, et al (2001) Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles. Bioinformatics 17 Suppl 1:S49–S55

    Google Scholar 

  • Cho RJ, et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65–73

    CAS  PubMed  Google Scholar 

  • Cliften PF, et al (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Devaux F, et al (2002) Genome-wide studies on the nuclear PDR3-controlled response to mitochondrial dysfunction in yeast. FEBS Lett 515:25–28

    Article  CAS  PubMed  Google Scholar 

  • Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    CAS  PubMed  Google Scholar 

  • Fickett JW (1996) Quantitative discrimination of MEF2 sites. Mol Cell Biol 16:437–441

    Google Scholar 

  • Gasch AP, et al (2001) Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 12:2987–3003

    CAS  PubMed  Google Scholar 

  • Gavin AC, et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    CAS  PubMed  Google Scholar 

  • Getz G, et al (2000) Super-paramagnetic clustering of yeast gene expression profiles. Physica A 279:457–464

    Article  CAS  Google Scholar 

  • Giaever G, et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Google Scholar 

  • Goffeau A, et al (1996) Life with 6000 genes. Science 274:546,563–547

    CAS  PubMed  Google Scholar 

  • Halfon MS, Michelson AM (2002) Exploring genetic regulatory networks in metazoan development: methods and models. Physiol Genomics 10:131–143

    CAS  PubMed  Google Scholar 

  • Helden J van, et al (1998) Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol 281:827–842

    Article  PubMed  Google Scholar 

  • Helden J van, et al (2000) A web site for the computational analysis of yeast regulatory sequences. Yeast 16:177–187

    Article  PubMed  Google Scholar 

  • Ho Y, et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    CAS  PubMed  Google Scholar 

  • Huang M, et al (1998) The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94:595–605

    CAS  PubMed  Google Scholar 

  • Hughes JD, et al (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296:1205–1214

    Article  CAS  PubMed  Google Scholar 

  • Ideker T, et al (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1:S233–S240

    Google Scholar 

  • Ito T, et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574

    CAS  PubMed  Google Scholar 

  • Iyer VR, et al (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538

    Article  CAS  PubMed  Google Scholar 

  • Johnston LH, Johnson AL (1995) The DNA repair genes RAD54 and UNG1 are cell cycle regulated in budding yeast but MCB promoter elements have no essential role in the DNA damage response. Nucleic Acids Res 23:2147–2152

    PubMed  Google Scholar 

  • Kim J, et al (1993) Adaptability at the protein-DNA interface is an important aspect of sequence recognition by bZIP proteins. Proc Natl Acad Sci USA 90:4513–4517

    CAS  PubMed  Google Scholar 

  • Lawrence CE, Reilly AA (1990) An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins 7:41–51

    CAS  PubMed  Google Scholar 

  • Lawrence CE, et al (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262:208–214

    CAS  PubMed  Google Scholar 

  • Lee TI, et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  PubMed  Google Scholar 

  • Lenhard B, Wasserman WW (2002) TFBS: Computational framework for transcription factor binding site analysis. Bioinformatics 18:1135–1136

    Article  CAS  PubMed  Google Scholar 

  • Mewes HW, et al (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30:31–34

    CAS  PubMed  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    CAS  PubMed  Google Scholar 

  • Pe'er D, et al (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 Suppl 1:S215–S224

    Google Scholar 

  • Pietrokovski S (1996) Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res 24:3836–3845

    Article  CAS  PubMed  Google Scholar 

  • Remacle JE, et al (1999) New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J 18:5073–5084

    Article  CAS  PubMed  Google Scholar 

  • Ren B, et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RC, et al (1995) The nuclear hormone receptor gene superfamily. Annu Rev Med 46:443–453

    Article  CAS  PubMed  Google Scholar 

  • Roth FP, et al (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16:939–945

    Google Scholar 

  • Schneider TD, et al (1986) Information content of binding sites on nucleotide sequences. J Mol Biol 188:415–431

    CAS  PubMed  Google Scholar 

  • Segal E, et al (2001) Rich probabilistic models for gene expression. Bioinformatics 17 Suppl 1:S243–S252

    Google Scholar 

  • Segal E, et al (2003) Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics (in press)

  • Shannon MF, Rao S (2002) Transcription. Of chips and ChIPs. Science 296:666–669

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker DD, et al (1996) Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 14:450–456

    CAS  PubMed  Google Scholar 

  • Sinha S, Tompa M (2002) Discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res 30:5549–5560

    Article  CAS  PubMed  Google Scholar 

  • Spellman PT, et al (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    CAS  PubMed  Google Scholar 

  • Stajich JG, et al (2002) The Bioperl toolkit: Perl modules for life sciences. Genome Res 12:1611–1618

    Article  CAS  PubMed  Google Scholar 

  • Stapley BJ, et al (2002) Predicting the sub-cellular location of proteins from text using support vector machines. Pac Symp Biocomput 374–385

  • Stormo GD (2000) DNA binding sites: representation and discovery. Bioinformatics 16:16–23

    Google Scholar 

  • Thijs G, et al (2002) A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes. J Comput Biol 9:447–464

    Article  PubMed  Google Scholar 

  • Uetz P, et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    CAS  PubMed  Google Scholar 

  • White S, et al (2001) The role of DSC1 components cdc10+, rep1+ and rep2+ in MCB gene transcription at the mitotic G1-S boundary in fission yeast. Curr Genet 40:251–259

    Article  CAS  PubMed  Google Scholar 

  • Winzeler EA, et al (1999) Fluorescence-based expression monitoring using microarrays. Methods Enzymol 306:3-18

    CAS  PubMed  Google Scholar 

  • Yuan D, et al (1999) Recognition of multiple patterns of DNA sites by Drosophila homeodomain protein Bicoid. J Biochem (Tokyo) 125:809–817

    Google Scholar 

  • Zhu J, Zhang MQ (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15:607–611

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for input and advice from Drs. Jennifer Fostel, Elizabeth Conibear and Lars Arvestad. The work was supported by funds from the Pharmacia Corporation to the Center for Genomics and Bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wyeth W. Wasserman.

Additional information

A. Sandelin and A. Höglund are credited as co-first authors of this publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandelin, A., Höglund, A., Lenhard, B. et al. Integrated analysis of yeast regulatory sequences for biologically linked clusters of genes. Funct Integr Genomics 3, 125–134 (2003). https://doi.org/10.1007/s10142-003-0086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-003-0086-6

Keywords

Navigation