Skip to main content
Log in

Dual energy CT can aid in the emergent differentiation of acute traumatic and pathologic fractures of the pelvis and long bones

  • Original Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript



To determine whether dual energy CT (DECT) scanning can aid in the differentiation between acute traumatic and pathologic fractures of the pelvis and long bones.


Retrospective review of 11 patients with 15 pathologic fractures proven by biopsy and/or other advanced imaging modalities. Age- and sex-matched patients with non-pathologic traumatic fractures were used as controls. Studies were reviewed by two readers on syngo.via software before and after the creation of virtual bone marrow color maps. Hounsfield units (HU) of the marrow space at the level of the fracture were recorded on both reviews. Differences between the HU of the bone marrow of traumatic and pathologic fractures were compared using two-tailed unpaired t-test.


A statistically significant difference was found in the HU of the affected bone marrow on DECT virtual noncalcium bone marrow color maps between the pathologic group (mean HU:4.89) and the non-pathologic group (mean HU: − 286.2) (p = 0.0177). HU measurements on the mixed kVp images were 150.4 for the pathologic and 94.1 for the non-pathologic fracture groups, respectively, with no statistical significance (p = 0.272).


DECT scanning can aid in the differentiation between hematoma at acute traumatic fracture sites and neoplasm at pathologic fracture sites. HU of the bone marrow is higher for pathologic fractures, and the difference in bone marrow attenuation is more evident on the virtual bone marrow color maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Hill T, D'Alessandro P, Murray K, Yates P (2015) Prognostic factors following pathological fractures. ANZ J Surg 85:159–163.

    Article  PubMed  Google Scholar 

  2. Lauren Z (2017) The orthopedic burden of U.S. Cancer Care Ortho Res Online J 1(2):OPROJ.000509

    Google Scholar 

  3. Hu YC, Lun DX, Wang H (2012) Clinical features of neoplastic pathological fracture in long bones. Chin Med J 125:3127–3132

    PubMed  Google Scholar 

  4. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F (2017) Bone metastases: an overview. Oncol Rev 11:321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R (2007) Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 110:1860–1867.

    Article  PubMed  Google Scholar 

  6. Behnke NK, Baker DK, Xu S, Niemeier TE, Watson SL, Ponce BA (2017) Risk factors for same-admission mortality after pathologic fracture secondary to metastatic cancer. Support Care Cancer 25:513

    Article  PubMed  Google Scholar 

  7. Bae JH, Lee IS, Song YS et al (2015) Bone tumors with an associated pathologic fracture: differentiation between benign and malignant status using radiologic findings. J Korean Soc Radiol 73:240–248

    Article  Google Scholar 

  8. Thomas C, Schabel C, Krauss B, Weisel K, Bongers M, Claussen CD, Horger M (2015) Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR Am J Roentgenol 204:W324–W331.

    Article  PubMed  Google Scholar 

  9. Kosmala A, Weng AM, Heidemeier A, Krauss B, Knop S, Bley TA, Petritsch B (2018) Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology 286:205–213.

    Article  PubMed  Google Scholar 

  10. Kosmala A, Weng AM, Krauss B, Knop S, Bley TA, Petritsch B (2018) Dual-energy CT of the bone marrow in multiple myeloma: diagnostic accuracy for quantitative differentiation of infiltration patterns. Eur Radiol 28:5083–5090.

    Article  PubMed  Google Scholar 

  11. IMV 2018 CT Market Outlook Report.

  12. Coleman R (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243s–6249s

    Article  PubMed  Google Scholar 

  13. Amin S, Achenbach SJ, Atkinson J, Khosla S, Melton LJ III (2014) Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res 29:581–589.

    Article  PubMed  Google Scholar 

  14. Curtis JR, Taylor AJ, Matthews RS, Ray MN, Becker DJ, Gary LC, Kilgore ML, Morrisey MA, Saag KG, Warriner A, Delzell E (2009) "pathologic" fractures: should these be included in epidemiologic studies of osteoporotic fractures? Osteoporos Int 20:1969–1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pockett RD, Castellano D, McEwan P, Oglesby A, Barber BL, Chung K (2010) The hospital burden of disease associated with bone metastases and skeletal-related events in patients with breast cancer, lung cancer, or prostate cancer in Spain. Eur J Cancer Care (Engl) 19:755–760

    Article  CAS  Google Scholar 

  16. Nikkel L, Mahmood B, Lander S et al (2018) Hospitalizations for fracture in patients with metastatic disease: primary source lesions in the United States. JCSO J Commun support Oncol 16:e14–e20.

    Article  Google Scholar 

  17. Fayad LM, Kawamoto S, Kamel IR, Bluemke DA, Eng J, Frassica FJ, Fishman EK (2005) Distinction of long bone stress fractures from pathologic fractures on cross-sectional imaging: how successful are we? AJR Am J Roentgenol 185:915–924

    Article  PubMed  Google Scholar 

  18. Mauch JT, Carr CM, Cloft H, Diehn FE (2018) Review of the imaging features of benign osteoporotic and malignant vertebral compression fractures. AJNR Am J Neuroradiol 39:1584–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fayad LM, Kamel IR, Kawamoto S, Bluemke DA, Frassica FJ, Fishman EK (2005) Distinguishing stress fractures from pathologic fractures: a multimodality approach. Skelet Radiol 34:245–259

    Article  Google Scholar 

  20. Booz C, Nöske J, Lenga L, Martin SS, Yel I, Eichler K, Gruber-Rouh T, Huizinga N, Albrecht MH, Vogl TJ, Wichmann JL (2020) Color-coded virtual non-calcium dual-energy CT for the depiction of bone marrow edema in patients with acute knee trauma: a multireader diagnostic accuracy study. Eur Radiol 30:141–150.

    Article  CAS  PubMed  Google Scholar 

  21. Shin DS, Shon OJ, Byun SJ, Choi JH, Chun KA, Cho IH (2008) Differentiation between malignant and benign pathologic fractures with F-18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Skelet Radiol 37:415–421

    Article  Google Scholar 

  22. Kato K, Aoki J, Endo K (2003) Utility of FDG PET in differential diagnosis of benign and malignant fractures in acute to subacute phase. Ann Nucl Med 17:41–46

    Article  PubMed  Google Scholar 

  23. Byun WM, Jang HW, Kim SW, Jang SH, Ahn SH, Ahn MW (2007) Diffusion-weighted magnetic resonance imaging of sacral insufficiency fractures: comparison with metastases of the sacrum. Spine 32:E820–E824

    Article  PubMed  Google Scholar 

  24. Karchevsky M, Babb JS, Schweitzer ME (2008) Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skelet Radiol 37:791–795

    Article  Google Scholar 

  25. Chen WT, Shih TT, Chen RC, Lo HY, Chou CT, Lee JM, Tu HY (2002) Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging 15:308–314

    Article  PubMed  Google Scholar 

  26. Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA (2016) Dual-energy CT for the musculoskeletal system. Radiology 281:690–707

    Article  PubMed  Google Scholar 

  27. Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM (2013) Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 269:525–533

    Article  PubMed  Google Scholar 

  28. Petritsch B, Kosmala A, Weng AM, Krauss B, Heidemeier A, Wagner R, Heintel TM, Gassenmaier T, Bley TA (2017) Third-generation dual-energy CT for detection of bone marrow edema. Radiology 284:161–168

    Article  PubMed  Google Scholar 

  29. Kaup M, Wichmann JL, Scholtz JE, Beeres M, Kromen W, Albrecht MH (2016) Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology 280:510–519

    Article  PubMed  Google Scholar 

  30. Frellesen C, Azadegan M, Martin SS, Otani K, D’Angelo T, Booz C (2018) Dual-energy computed tomography-based display of bone marrow edema in incidental vertebral compression fractures: diagnostic accuracy and characterization in oncological patients undergoing routine staging computed tomography. Investig Radiol 53:409–416

    Article  Google Scholar 

  31. Issa G, Davis D, Mulligan ME (2018) The ability of dual-energy computed tomography to distinguish Normal bone marrow from metastases using bone marrow color maps. J Comput Assist Tomogr 42:552–558

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael Mulligan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa, G., Mulligan, M. Dual energy CT can aid in the emergent differentiation of acute traumatic and pathologic fractures of the pelvis and long bones. Emerg Radiol 27, 285–292 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: