Hemorrhagic and non-hemorrhagic causes of signal loss on susceptibility-weighted imaging


Susceptibility-weighted imaging (SWI) plays a key role in an emergency setting. SWI takes the intrinsic properties of materials being scanned and creates a visual representation of their effects on the magnetic field, thereby differentiating a number of pathologies. Magnetic resonance imaging (MRI) is now more often used, especially when computed tomography (CT) is inconclusive or even negative. Often, clinicians prefer to obtain an MRI first. This article will review the various hemorrhagic and non-hemorrhagic causes of low signal on SWI. There will be a focus on the distribution patterns of low signal on SWI in pathologies such as diffuse axonal injury, cerebral amyloid angiopathy, and cerebral fat embolism. It is important to recognize these patterns of susceptibility, as the radiologist may be the first to give an accurate diagnosis and therefore, directly impact clinical management.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YCN (2009) Susceptibility-weighted imaging: technical aspects and clinical applications. AJNR Am J Neuroradiol 30(1):19–30

    CAS  Article  Google Scholar 

  2. 2.

    Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 29:9–17

    CAS  Article  Google Scholar 

  3. 3.

    Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, Part 2. AJNR Am J Neuroradiol 30(2):232–252

    CAS  Article  Google Scholar 

  4. 4.

    Kim JJ, Gean AD (2011) Imaging for the diagnosis and management of traumatic brain injury. Neurotherapeutics 8:39–53

    Article  Google Scholar 

  5. 5.

    Wu Z, Li S, Lei J, An D, Haacke EM (2010) Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging. AJNR Am J Neuroradiol 31(7):1302–1310

    CAS  Article  Google Scholar 

  6. 6.

    Van Gijn J, Rinkel GJE (2001) Subarachnoid haemorrhage: diagnosis, causes and management. Brain 124(2):249–278

    Article  Google Scholar 

  7. 7.

    Caceres JA, Goldstein JN (2012) Intracranial hemorrhage. Emerg Med Clin North Am 30(3):771–794

    Article  Google Scholar 

  8. 8.

    De Oliveira Manoel AL et al (2016) The critical care management of spontaneous intracranial hemorrhage: a contemporary review. Crit Care 20:272

    Article  Google Scholar 

  9. 9.

    Aguilar MI, Brott TG (2011) Update in intracerebral hemorrhage. Neurohospitalist 1(3):148–159

    Article  Google Scholar 

  10. 10.

    Smith DH, Hicks R, Povlishock JT (2013) Therapy development for diffuse axonal injury. J Neurotrauma 30(5):307–323

    Article  Google Scholar 

  11. 11.

    Greenberg SM, Charidimou (2018) Diagnosis of cerebral amyloid angiopathy. Stroke 49:491–497

    Article  Google Scholar 

  12. 12.

    Chao CP, Kotsenas AL, Broderick DF (2006) Cerebral amyloid angiopathy: CT and MR imaging findings. RadioGraphics 26(5):1517–1531

    Article  Google Scholar 

  13. 13.

    Suh S et al (2009) Cerebral fat embolism; susceptibility-weighted magnetic resonance imaging. Arch Neurol 66(9):1170

    Article  Google Scholar 

  14. 14.

    Leach JL, Strub WM, Gaskill-Shipley MF (2007) Cerebral venous thrombus signal intensity and susceptibility effects on gradient recalled-echo MR imaging. AJNR Am J Neuroradiol 28:940–945

    CAS  PubMed  Google Scholar 

  15. 15.

    Lu A et al (2016) Cerebral venous thrombosis and infarct: review of imaging manifestations. Appl Radiol 45(3):9–17

    Google Scholar 

  16. 16.

    Kumar N (2010) Neuroimaging in superficial siderosis: an in-depth look. AJNR Am J Neuroradiol 31(1):5–14

    CAS  Article  Google Scholar 

  17. 17.

    Assarzadegan F et al (2013) Superficial siderosis: a rare case of ataxia and otoneurological manifestations. Iran J Neurol 12(2):69–71

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dabdoub CB, Salas G, Silveira EN, Dabdoub CF (2015) Review of the management of pneumocephalus. Surg Neurol Int 6:155

    Article  Google Scholar 

  19. 19.

    Hargreaves B et al (2011) Metal induced artifacts in MRI. AJR 197(3):547–555

    Article  Google Scholar 

  20. 20.

    Gregory A, Hayflick S (2005) Neurodegeneration with brain iron accumulation disorders overview. Folia Neuropathol 43(4):286–296

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kruer MC, Boddaert N, Schneider SA, Houlden H, Bhatia KP, Gregory A, Anderson JC, Rooney WD, Hogarth P, Hayflick SJ (2012) Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol 33(3):407–414

    CAS  Article  Google Scholar 

  22. 22.

    Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16:564–570

    Article  Google Scholar 

  23. 23.

    Thomas-Sohl KA, Vaslow DF, Maria BL (2004) Sturge-Weber syndrome: a review. Pediatr Neurol 30:303–310

    Article  Google Scholar 

  24. 24.

    Watts J, Box G, Galvin A, Brotchie P, Trost N, Sutherland T (2014) Magnetic resonance imaging of meningiomas: a pictorial review. Insights Imaging 5(1):113–122

    CAS  Article  Google Scholar 

  25. 25.

    Khalid L, Carone M, Dumrongpisutikul N, Intrapiromkul J, Bonekamp D, Barker PB, Yousem DM (2012) Imaging characteristics of oligodendrogliomas that predict grade. AJNR Am J Neuroradiol 33:852–857

    CAS  Article  Google Scholar 

  26. 26.

    Smits M (2016) Imaging of oligodendroglioma. Br J Radiol 89(1060):20150857

    Article  Google Scholar 

  27. 27.

    Lee IH, Zan E, Bell WR, Burger PC, Sung H, Yousem DM (2016) Craniopharyngiomas: radiological differentiation of two types. J Korean Neurosurg Soc 59(5):466–470

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Alok A. Bhatt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skalski, K.A., Kessler, A.T. & Bhatt, A.A. Hemorrhagic and non-hemorrhagic causes of signal loss on susceptibility-weighted imaging. Emerg Radiol 25, 691–701 (2018). https://doi.org/10.1007/s10140-018-1634-7

Download citation


  • Susceptibility-weighted imaging (SWI)
  • Hemorrhage
  • Calcification
  • Foreign body