Advertisement

Emergency Radiology

, Volume 25, Issue 6, pp 691–701 | Cite as

Hemorrhagic and non-hemorrhagic causes of signal loss on susceptibility-weighted imaging

  • Kamila A. Skalski
  • Alexander T. Kessler
  • Alok A. BhattEmail author
Pictorial Essay

Abstract

Susceptibility-weighted imaging (SWI) plays a key role in an emergency setting. SWI takes the intrinsic properties of materials being scanned and creates a visual representation of their effects on the magnetic field, thereby differentiating a number of pathologies. Magnetic resonance imaging (MRI) is now more often used, especially when computed tomography (CT) is inconclusive or even negative. Often, clinicians prefer to obtain an MRI first. This article will review the various hemorrhagic and non-hemorrhagic causes of low signal on SWI. There will be a focus on the distribution patterns of low signal on SWI in pathologies such as diffuse axonal injury, cerebral amyloid angiopathy, and cerebral fat embolism. It is important to recognize these patterns of susceptibility, as the radiologist may be the first to give an accurate diagnosis and therefore, directly impact clinical management.

Keywords

Susceptibility-weighted imaging (SWI) Hemorrhage Calcification Foreign body 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YCN (2009) Susceptibility-weighted imaging: technical aspects and clinical applications. AJNR Am J Neuroradiol 30(1):19–30CrossRefGoogle Scholar
  2. 2.
    Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 29:9–17CrossRefGoogle Scholar
  3. 3.
    Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, Part 2. AJNR Am J Neuroradiol 30(2):232–252CrossRefGoogle Scholar
  4. 4.
    Kim JJ, Gean AD (2011) Imaging for the diagnosis and management of traumatic brain injury. Neurotherapeutics 8:39–53CrossRefGoogle Scholar
  5. 5.
    Wu Z, Li S, Lei J, An D, Haacke EM (2010) Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging. AJNR Am J Neuroradiol 31(7):1302–1310CrossRefGoogle Scholar
  6. 6.
    Van Gijn J, Rinkel GJE (2001) Subarachnoid haemorrhage: diagnosis, causes and management. Brain 124(2):249–278CrossRefGoogle Scholar
  7. 7.
    Caceres JA, Goldstein JN (2012) Intracranial hemorrhage. Emerg Med Clin North Am 30(3):771–794CrossRefGoogle Scholar
  8. 8.
    De Oliveira Manoel AL et al (2016) The critical care management of spontaneous intracranial hemorrhage: a contemporary review. Crit Care 20:272CrossRefGoogle Scholar
  9. 9.
    Aguilar MI, Brott TG (2011) Update in intracerebral hemorrhage. Neurohospitalist 1(3):148–159CrossRefGoogle Scholar
  10. 10.
    Smith DH, Hicks R, Povlishock JT (2013) Therapy development for diffuse axonal injury. J Neurotrauma 30(5):307–323CrossRefGoogle Scholar
  11. 11.
    Greenberg SM, Charidimou (2018) Diagnosis of cerebral amyloid angiopathy. Stroke 49:491–497CrossRefGoogle Scholar
  12. 12.
    Chao CP, Kotsenas AL, Broderick DF (2006) Cerebral amyloid angiopathy: CT and MR imaging findings. RadioGraphics 26(5):1517–1531CrossRefGoogle Scholar
  13. 13.
    Suh S et al (2009) Cerebral fat embolism; susceptibility-weighted magnetic resonance imaging. Arch Neurol 66(9):1170CrossRefGoogle Scholar
  14. 14.
    Leach JL, Strub WM, Gaskill-Shipley MF (2007) Cerebral venous thrombus signal intensity and susceptibility effects on gradient recalled-echo MR imaging. AJNR Am J Neuroradiol 28:940–945PubMedGoogle Scholar
  15. 15.
    Lu A et al (2016) Cerebral venous thrombosis and infarct: review of imaging manifestations. Appl Radiol 45(3):9–17Google Scholar
  16. 16.
    Kumar N (2010) Neuroimaging in superficial siderosis: an in-depth look. AJNR Am J Neuroradiol 31(1):5–14CrossRefGoogle Scholar
  17. 17.
    Assarzadegan F et al (2013) Superficial siderosis: a rare case of ataxia and otoneurological manifestations. Iran J Neurol 12(2):69–71PubMedPubMedCentralGoogle Scholar
  18. 18.
    Dabdoub CB, Salas G, Silveira EN, Dabdoub CF (2015) Review of the management of pneumocephalus. Surg Neurol Int 6:155CrossRefGoogle Scholar
  19. 19.
    Hargreaves B et al (2011) Metal induced artifacts in MRI. AJR 197(3):547–555CrossRefGoogle Scholar
  20. 20.
    Gregory A, Hayflick S (2005) Neurodegeneration with brain iron accumulation disorders overview. Folia Neuropathol 43(4):286–296PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kruer MC, Boddaert N, Schneider SA, Houlden H, Bhatia KP, Gregory A, Anderson JC, Rooney WD, Hogarth P, Hayflick SJ (2012) Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol 33(3):407–414CrossRefGoogle Scholar
  22. 22.
    Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16:564–570CrossRefGoogle Scholar
  23. 23.
    Thomas-Sohl KA, Vaslow DF, Maria BL (2004) Sturge-Weber syndrome: a review. Pediatr Neurol 30:303–310CrossRefGoogle Scholar
  24. 24.
    Watts J, Box G, Galvin A, Brotchie P, Trost N, Sutherland T (2014) Magnetic resonance imaging of meningiomas: a pictorial review. Insights Imaging 5(1):113–122CrossRefGoogle Scholar
  25. 25.
    Khalid L, Carone M, Dumrongpisutikul N, Intrapiromkul J, Bonekamp D, Barker PB, Yousem DM (2012) Imaging characteristics of oligodendrogliomas that predict grade. AJNR Am J Neuroradiol 33:852–857CrossRefGoogle Scholar
  26. 26.
    Smits M (2016) Imaging of oligodendroglioma. Br J Radiol 89(1060):20150857CrossRefGoogle Scholar
  27. 27.
    Lee IH, Zan E, Bell WR, Burger PC, Sung H, Yousem DM (2016) Craniopharyngiomas: radiological differentiation of two types. J Korean Neurosurg Soc 59(5):466–470CrossRefGoogle Scholar

Copyright information

© American Society of Emergency Radiology 2018

Authors and Affiliations

  1. 1.Department of Imaging SciencesUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations