Skip to main content

64 Slice multi-detector row cardiac CT

Abstract

Cardiac imaging is feasible with multi-detector row (MDCT) scanners. Coronary arterial anatomy and both non-calcified and calcified plaques are depicted at CT coronary angiography. Vessel wall pathology and luminal diameter are depicted, and secondary myocardial changes may also be seen. Diagnostic capacity has increased with technological advancement, and preliminary investigations confirm the utility of 64-MDCT in low- and intermediate-risk patients who present to the emergency department with acute chest pain. The clinical indications, 64-MDCT technique, and MDCT findings in coronary artery disease are reviewed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Achenbach S, Anders K, Kalender WA (2008) Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol 18:1188–1198 doi:10.1007/s00330-008-0883-3

    Article  PubMed  Google Scholar 

  2. Collins J (2007) Image quality and radiation dose at coronary CT angiography. Appl Radiol 36(Suppl):42–55 (Dec)

    Google Scholar 

  3. McCollough CH, Primak AN, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243(3):775–784 doi:10.1148/radiol.2433061165

    Article  PubMed  Google Scholar 

  4. Ladapo JA, Hoffmann U, Bamberg F, Nagurney JT, Cutler DM, Weinstein MC et al (2008) Cost-effectiveness of coronary MDCT in the triage of patients with acute chest pain. AJR Am J Roentgenol 191:455–463 doi:10.2214/AJR.07.3611

    Article  PubMed  Google Scholar 

  5. Heffernan EJ, Dodd JD, Malone DE (2008) Cardiac multidetector CT: technical and diagnostic evaluation with evidence-based practice techniques. Radiology 248:366–377 doi:10.1148/radiol.2482070356

    Article  PubMed  Google Scholar 

  6. Vanhoenacker PK, Decramer I, Bladt O, Sarno G, Bevernage C, Wijns W (2007) Detection of non-ST-elevation myocardial infarction and unstable angina in the acute setting: meta-analysis of diagnostic performance of multi-detector computed tomographic angiography. BMC Cardiovasc Disord 7:39 (Dec 19)

    Article  PubMed  Google Scholar 

  7. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46(3):552–557 doi:10.1016/j.jacc.2005.05.056

    Article  PubMed  Google Scholar 

  8. Ong TK, Chin SP, Liew CK et al (2006) Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am Heart J 151(6):1323.e1–1323.e6

    Article  Google Scholar 

  9. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112(15):2318–2323 doi:10.1161/CIRCULATIONAHA.105.533471

    Article  PubMed  Google Scholar 

  10. Brodoefel H, Reimann A, Burgstahler C et al (2008) Noninvasive coronary angiography using 64-slice spiral computed tomography in an unselected patient collective: effect of heart rate, heart rate variability and coronary calcifications on image quality and diagnostic accuracy. Eur J Radiol 66(1):134–141 doi:10.1016/j.ejrad.2007.05.013

    Article  PubMed  CAS  Google Scholar 

  11. Hausleiter J, Meyer T, Hadamitzky M et al (2007) Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter Resolution (CACTUS) Trial. Eur Heart J 28(24):3034–3041 doi:10.1093/eurheartj/ehm150

    Article  PubMed  Google Scholar 

  12. Dorgelo J, Willems TP, van Ooijen PM et al (2005) A 16-slice multidetector computed tomography protocol for evaluation of the gastroepiploic artery grafts in patients after coronary artery bypass surgery. Eur Radiol 15(9):1994–1999 doi:10.1007/s00330-005-2766-1

    Article  PubMed  CAS  Google Scholar 

  13. Cademartiri F, Luccichenti G, Marano R, Pavone P (2004) Techniques for optimisation of coronary artery opacification in non-invasive angiography with a 16-row multislice computed tomography. Radiol Med (Torino) 107(1–2):24–34

    Google Scholar 

  14. Cademartiri F, Nieman K, van der Lugt A et al (2004) Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology 233(3):817–823 doi:10.1148/radiol.2333030668

    Article  PubMed  Google Scholar 

  15. Leschka S, Husmann L, Desbiolles LM et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16(9):1964–1972 doi:10.1007/s00330-006-0262-x

    Article  PubMed  Google Scholar 

  16. White CS, Kuo D (2007) Chest pain in the emergency department: role of multidetector CT. Radiology 245(3):672–681 doi:10.1148/radiol.2453061481

    Article  PubMed  Google Scholar 

  17. Runza G, La Grutta L, Alaimo V et al (2007) Comprehensive cardiovascular ECG-gated MDCT as a standard diagnostic tool in patients with acute chest pain. Eur J Radiol 64(1):41–47 doi:10.1016/j.ejrad.2007.06.020

    Article  PubMed  CAS  Google Scholar 

  18. Gallagher MJ, Raff GL (2008) Use of multislice CT for the evaluation of emergency room patients with chest pain: the so-called “triple rule-out”. Catheter Cardiovasc Interv 71(1):92–99 doi:10.1002/ccd.21398

    Article  PubMed  Google Scholar 

  19. Litmanovitch D, Zamboni GA, Hauser TH et al (2008) ECG-gated chest CT angiography with 64-MDCT and tri-phasic IV contrast administration regimen in patients with acute non-specific chest pain. Eur Radiol 18(2):308–317 doi:10.1007/s00330-007-0739-2

    Article  PubMed  Google Scholar 

  20. Cademartiri F, Mollet N, Lemos PA et al (2004) Standard versus user-interactive assessment of significant coronary stenoses with multislice computed tomography coronary angiography. Am J Cardiol 94(12):1590–1593 doi:10.1016/j.amjcard.2004.08.051

    Article  PubMed  Google Scholar 

  21. Ferencik M, Ropers D, Abbara S et al (2007) Diagnostic accuracy of image postprocessing methods for the detection of coronary artery stenoses by using multidetector CT. Radiology 243(3):696–702 doi:10.1148/radiol.2433060080

    Article  PubMed  Google Scholar 

  22. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26(15):1482–1487 doi:10.1093/eurheartj/ehi261

    Article  PubMed  Google Scholar 

  23. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46(1):147–154 doi:10.1016/j.jacc.2005.03.071

    Article  PubMed  Google Scholar 

  24. Moselewski F, Ropers D, Pohle K et al (2004) Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multidetector computed tomography versus intravascular ultrasound. Am J Cardiol 94(10):1294–1297 doi:10.1016/j.amjcard.2004.07.117

    Article  PubMed  Google Scholar 

  25. Caussin C, Daoud B, Ghostine S et al (2005) Comparison of lumens of intermediate coronary stenosis using 16-slice computed tomography versus intravascular ultrasound. Am J Cardiol 96(4):524–528 doi:10.1016/j.amjcard.2005.04.013

    Article  PubMed  Google Scholar 

  26. Cury RC, Pomerantsev EV, Ferencik M et al (2005) Comparison of the degree of coronary stenoses by multidetector computed tomography versus by quantitative coronary angiography. Am J Cardiol 96(6):784–787 doi:10.1016/j.amjcard.2005.05.020

    Article  PubMed  Google Scholar 

  27. Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography). J Am Coll Cardiol 33(6):1756–1824 doi:10.1016/S0735-1097(99)00126-6

    Article  PubMed  CAS  Google Scholar 

  28. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4)(Suppl):5–40

    PubMed  CAS  Google Scholar 

  29. Datta J, White CS, Gilkeson RC et al (2005) Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology 235(3):812–818 doi:10.1148/radiol.2353040314

    Article  PubMed  Google Scholar 

  30. Danias PG, Stuber M, McConnell MV, Manning WJ (2001) The diagnosis of congenital coronary anomalies with magnetic resonance imaging. Coron Artery Dis 12(8):621–626 doi:10.1097/00019501-200112000-00005

    Article  PubMed  CAS  Google Scholar 

  31. Rigatelli G, Docali G, Rossi P et al (2003) Congenital coronary artery anomalies angiographic classification revisited. Int J Cardiovasc Imaging 19(5):361–366 doi:10.1023/A:1025806908289

    Article  PubMed  Google Scholar 

  32. Engel HJ, Torres C, Page HL (1975) Major variations in anatomical origin of the coronary arteries: angiographic observations in 4250 patients without associated congenital heart disease. Cathet Cardiovasc Diagn 1:157–169 doi:10.1002/ccd.1810010205

    Article  PubMed  CAS  Google Scholar 

  33. Trivellato M, Angelini P, Leachman RD (1980) Variations in coronary artery anatomy: Normal versus abnormal. Cardiovasc Dis 7(4):357–370

    PubMed  Google Scholar 

  34. Hague C, Andrews G, Forster B (2004) MDCT of a malignant anomalous right coronary artery. AJR Am J Roentgenol 182:617–618

    PubMed  Google Scholar 

  35. Smith SC Jr, Dove JT, Jacobs AK et al (2001) ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines)—executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the Society for Cardiac Angiography and Interventions. Circulation 103(24):3019–3041

    PubMed  Google Scholar 

  36. Funabashi N, Asano M, Komuro I (2005) Large collateral conus branch to the left anterior descending branch of the coronary artery in a subject with angina pectoris demonstrated by multislice computed tomography. Int J Cardiol 103(1):105–106 doi:10.1016/j.ijcard.2004.06.017

    Article  PubMed  Google Scholar 

  37. Leber AW, Knez A, Becker A et al (2005) Visualising noncalcified coronary plaques by CT. Int J Cardiovasc Imaging 21(1):55–61 doi:10.1007/s10554-004-5337-7

    Article  PubMed  Google Scholar 

  38. Leber AW, Knez A, White CW et al (2003) Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am J Cardiol 91(6):714–718 doi:10.1016/S0002-9149(02)03411-2

    Article  PubMed  Google Scholar 

  39. Inoue F, Sato Y, Matsumoto N, Tani S, Uchiyama T (2004) Evaluation of plaque texture by means of multislice computed tomography in patients with acute coronary syndrome and stable angina. Circ J 68(9):840–844 doi:10.1253/circj.68.840

    Article  PubMed  Google Scholar 

  40. Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109(1):14–17 doi:10.1161/01.CIR.0000111517.69230.0F

    Article  PubMed  Google Scholar 

  41. Nikolaou K, Becker CR, Muders M et al (2004) Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis 174(2):243–252

    PubMed  CAS  Google Scholar 

  42. Becker CR, Nikolaou K, Muders M et al (2003) Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol 13(9):2094–2098 doi:10.1007/s00330-003-1889-5

    Article  PubMed  Google Scholar 

  43. Leber AW, Knez A, Becker A et al (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 43(7):1241–1247 doi:10.1016/j.jacc.2003.10.059

    Article  PubMed  Google Scholar 

  44. Schroeder S, Kuettner A, Wojak T et al (2004) Non-invasive evaluation of atherosclerosis with contrast enhanced 16 slice spiral computed tomography: results of ex vivo investigations. Heart 90(12):1471–1475 doi:10.1136/hrt.2004.037861

    Article  PubMed  CAS  Google Scholar 

  45. Schroeder S, Flohr T, Kopp AF et al (2001) Accuracy of density measurements within plaques located in artificial coronary arteries by X-ray multislice CT: results of a phantom study. J Comput Assist Tomogr 25(6):900–906 doi:10.1097/00004728-200111000-00013

    Article  PubMed  CAS  Google Scholar 

  46. Caussin C, Ohanessian A, Ghostine S et al (2004) Characterization of vulnerable nonstenotic plaque with 16-slice computed tomography compared with intravascular ultrasound. Am J Cardiol 94(1):99–104 doi:10.1016/j.amjcard.2004.03.036

    Article  PubMed  Google Scholar 

  47. Achenbach S, Ropers D, Hoffmann U et al (2004) Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 43(5):842–847 doi:10.1016/j.jacc.2003.09.053

    Article  PubMed  Google Scholar 

  48. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM (2000) Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 101(6):598–603

    PubMed  CAS  Google Scholar 

  49. Hoffman U, Pena AJ, Moselewski F et al (2006) MDCT in early triage of patients with acute chest pain. AJR Am J Roentgenol 187:1240–1247 doi:10.2214/AJR.05.2240

    Article  Google Scholar 

  50. Gallagher MJ, Ross MA, Raff GL, Goldstein JA, O’Neill WW, O’Neil B (2007) The diagnostic accuracy of 64-slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients. Ann Emerg Med 49:125–136 doi:10.1016/j.annemergmed.2006.06.043

    Article  PubMed  Google Scholar 

  51. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49:863–871 doi:10.1016/j.jacc.2006.08.064

    Article  PubMed  Google Scholar 

  52. Rubinshtein R, Halon DA, Gaspar T et al (2007) Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation 115:1762–1768 doi:10.1161/CIRCULATIONAHA.106.618389

    Article  PubMed  Google Scholar 

  53. Rubinshtein R, Halon DA, Gaspar T et al (2007) Impact of 64-slice cardiac computed tomographic angiography on clinical decision-making in emergency department patients with chest pain of possible myocardial ischemic origin. Am J Cardiol 100:1522–1526 doi:10.1016/j.amjcard.2007.06.052

    Article  PubMed  Google Scholar 

  54. Hoffmann U, Nagurney JT, Moselewski F et al (2006) Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation 114:2251–2260 doi:10.1161/CIRCULATIONAHA.106.634808

    Article  PubMed  Google Scholar 

  55. Johnson TR, Nikolaou K, Becker A et al (2008) Dual-source CT for chest pain assessment. Eur Radiol 18(4):773–780 doi:10.1007/s00330-007-0803-y

    Article  PubMed  Google Scholar 

  56. Kuettner A, Beck T, Drosch T et al (2005) Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution. Heart 91(7):938–941 doi:10.1136/hrt.2004.044735

    Article  PubMed  CAS  Google Scholar 

  57. Kuettner A, Kopp AF, Schroeder S et al (2004) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol 43(5):831–839 doi:10.1016/j.jacc.2003.05.015

    Article  PubMed  Google Scholar 

  58. Heuschmid M, Kuettner A, Schroeder et al (2005) ECG-gated 16-MDCT of the coronary arteries: assessment of image quality and accuracy in detecting stenoses. AJR Am J Roentgenol 184(5):1413–1419

    PubMed  Google Scholar 

  59. Burgstahler C, Beck T, Kuettner A et al (2005) Image quality and diagnostic accuracy of 16-slice multidetector spiral computed tomography for the detection of coronary artery disease in elderly patients. J Comput Assist Tomogr 29(6):734–738 doi:10.1097/01.rct.0000181720.95146.d4

    Article  PubMed  Google Scholar 

  60. Burgstahler C, Beck T, Kuettner A et al (2006) Image quality and diagnostic accuracy of 16-slice multidetector computed tomography for the detection of coronary artery disease in obese patients. Int J Obes Lond 30(3):569–573 doi:10.1038/sj.ijo.0803157

    Article  PubMed  CAS  Google Scholar 

  61. Frazier AA, Qureshi F, Read KM, Gilkeson RC, Poston RS, White CS (2005) Coronary artery bypass grafts: assessment with multidetector CT in the early and late postoperative settings. Radiographics 25(4):881–896 doi:10.1148/rg.254045151

    Article  PubMed  Google Scholar 

  62. Martuscelli E, Romagnoli A, D’Eliseo A (2004) Evaluation of venous and arterial conduit patency by 16-slice spiral computed tomography. Circulation 110(20):3234–3238 doi:10.1161/01.CIR.0000147277.52036.07

    Article  PubMed  CAS  Google Scholar 

  63. Salm LP, Bax JJ, Jukema JW et al (2005) Comprehensive assessment of patients after coronary artery bypass grafting by 16-detector-row computed tomography. Am Heart J 150(4):775–781 doi:10.1016/j.ahj.2004.11.029

    Article  PubMed  Google Scholar 

  64. Schlosser T, Konorza T, Hunold P, Kuhl H, Schmermund A, Barkhausen J (2004) Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol 44(6):1224–1229 doi:10.1016/j.jacc.2003.09.075

    Article  PubMed  Google Scholar 

  65. Willmann JK, Weishaupt D, Kobza R et al (2004) Coronary artery bypass grafts: ECG-gated multi-detector row CT angiography—influence of image reconstruction interval on graft visibility. Radiology 232(2):568–577 doi:10.1148/radiol.2322030788

    Article  PubMed  Google Scholar 

  66. Ohnesorge BM, Hofmann LK, Flohr TG, Schoepf UJ (2005) CT for imaging coronary artery disease: defining the paradigm for its application. Int J Cardiovasc Imaging 21(1):85–104 doi:10.1007/s10554-004-5346-6

    Article  PubMed  Google Scholar 

  67. Gaspar T, Halon DA, Lewis BS et al (2005) Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography. J Am Coll Cardiol 46(8):1573–1579 doi:10.1016/j.jacc.2005.07.049

    Article  PubMed  Google Scholar 

  68. Hong C, Chrysant GS, Woodard PK, Bae KT (2004) Coronary artery stent patency assessed with in-stent contrast enhancement measured at multi-detector row CT angiography: initial experience. Radiology 233(1):286–291 doi:10.1148/radiol.2331031564

    Article  PubMed  Google Scholar 

  69. Mahnken AH, Buecker A, Wildberger JE et al (2004) Coronary artery stents in multislice computed tomography: in vitro artifact evaluation. Invest Radiol 39(1):27–33 doi:10.1097/01.rli.0000095471.91575.18

    Article  PubMed  Google Scholar 

  70. Cademartiri F, Runza G, Mollet NR et al (2005) Influence of increasing convolution kernel filtering on plaque imaging with multislice CT using an ex-vivo model of coronary angiography. Radiol Med (Torino) 110(3):234–240

    Google Scholar 

  71. Cademartiri F, La Grutta L, Runza G et al (2007) Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography. Eur Radiol 17(7):1842–1849 doi:10.1007/s00330-006-0548-z

    Article  PubMed  Google Scholar 

  72. Seifarth H, Raupach R, Schaller S et al (2005) Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15(4):721–726 doi:10.1007/s00330-004-2594-8

    Article  PubMed  Google Scholar 

  73. Maintz D, Seifarth H, Flohr T et al (2003) Improved coronary artery stent visualization and in-stent stenosis detection using 16-slice computed-tomography and dedicated image reconstruction technique. Invest Radiol 38(12):790–795

    PubMed  Google Scholar 

  74. Hoffmann U, Millea R, Enzweiler C et al (2004) Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology 231(3):697–701 doi:10.1148/radiol.2313030132

    Article  PubMed  Google Scholar 

  75. Koyama Y, Mochizuki T, Higaki J (2004) Computed tomography assessment of myocardial perfusion, viability, and function. J Magn Reson Imaging 19(6):800–815 doi:10.1002/jmri.20067

    Article  PubMed  Google Scholar 

  76. White RD (2004) MR and CT assessment for ischemic cardiac disease. J Magn Reson Imaging 19(6):659–675 doi:10.1002/jmri.20068

    Article  PubMed  Google Scholar 

  77. Setser RM, O’Donnell TP, Smedira NG et al (2005) Coregistered MR imaging myocardial viability maps and multi-detector row CT coronary angiography displays for surgical revascularization planning: initial experience. Radiology 237(2):465–473 doi:10.1148/radiol.2372040236

    Article  PubMed  Google Scholar 

  78. Nikolaou K, Knez A, Sagmeister S et al (2004) Assessment of myocardial infarctions using multidetector-row computed tomography. J Comput Assist Tomogr 28(2):286–292 doi:10.1097/00004728-200403000-00021

    Article  PubMed  Google Scholar 

  79. Gosalia A, Haramati LB, Sheth MP, Spindola-Franco H (2004) CT detection of acute myocardial infarction. AJR Am J Roentgenol 182(6):1563–1566

    PubMed  Google Scholar 

  80. Konen E, Merchant N, Gutierrez C et al (2005) True versus false left ventricular aneurysm: differentiation with MR imaging—initial experience. Radiology 236(1):65–70 doi:10.1148/radiol.2361031699

    Article  PubMed  Google Scholar 

  81. Kido T, Kurata A, Higashino H et al (2007) Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med 25(1):38–44 doi:10.1007/s11604-006-0097-z

    Article  PubMed  Google Scholar 

  82. Achenbach S, Ropers D, Kuettner A et al (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography—initial experience. Eur J Radiol 57(3):331–335 doi:10.1016/j.ejrad.2005.12.017

    Article  PubMed  Google Scholar 

  83. Ropers U, Ropers D, Pflederer T et al (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50(25):2393–2398 doi:10.1016/j.jacc.2007.09.017

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot K. Fishman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pannu, H.K., Johnson, P.T. & Fishman, E.K. 64 Slice multi-detector row cardiac CT. Emerg Radiol 16, 1–10 (2009). https://doi.org/10.1007/s10140-008-0760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-008-0760-z

Keywords

  • Computed tomography
  • Coronary artery
  • Cardiac imaging