Skip to main content

MDCT in the evaluation of skeletal trauma: principles, protocols, and clinical applications

Abstract

Multidetector computed tomography (MDCT) scanners have made volume imaging possible and are used extensively to study polytrauma patients, especially in the evaluation of the spine and peripheral skeleton. An MDCT scanner coupled with a modern workstation has become an essential diagnostic tool for any emergency department. Familiarity with the basic physical principles of MDCT such as projection data, section collimation, and beam collimation is important to achieve high-quality imaging while keeping unnecessary radiation to a minimum. After a polytrauma MDCT examination, images can be reconstructed to obtain different slice thickness, slice interval, fields of view, or reconstruction kernels. No additional scanning is needed for imaging the thoracolumbar spine or bony pelvis. High-quality multiplanar reformation (MPR) and three-dimensional (3-D) images can be created at the workstation using the volumetric data. However, MDCT is a high-dose examination, and care should be taken to use as low a dose as possible. In the musculoskeletal system, MDCT has long been used for evaluation of spinal and pelvic trauma; however, the frequency of its use in extremity trauma has been low. In the extremities, radiography seems to underestimate the extent and severity of injury, especially in complex areas such as the shoulder, elbow, wrist, knee, and ankle. MDCT in the extremities is helpful in fracture detection, evaluation, characterization, and treatment planning. The MPR images give excellent structural detail, and the 3-D images help in understanding the spatial relations, which is important for fracture classification and for preoperative planning. MDCT is also helpful in the follow-up of postoperative results, even in the presence of hardware. Tendon injuries can also be evaluated with MDCT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Rydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces DJ Jr, Aisen AM, Persohn SA, Kopecky KK (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806

    PubMed  CAS  Google Scholar 

  2. El-Khoury GY, Bennett DL, Ondr GJ (2004) Multidetector-row computed tomography. J Am Acad Orthop Surg 12:1–5

    PubMed  Google Scholar 

  3. Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN (2005) Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT. Radiographics 25:1409–1428

    PubMed  Article  Google Scholar 

  4. West OC (2004) How to image from head to pubis for blunt abdominal trauma using GE LightSpeed QX/i. Emerg Radiol 11:68–76

    PubMed  Article  Google Scholar 

  5. Buckwalter KA, Rydberg J, Kopecky KK, Crow K, Yang EL (2001) Musculoskeletal imaging with multislice CT. AJR Am J Roentgenol 176:979–986

    PubMed  CAS  Google Scholar 

  6. Rydberg J, Liang Y, Teague SD (2004) Fundamentals of multichannel CT. Semin Musculoskelet Radiol 8:137–146

    PubMed  Article  Google Scholar 

  7. Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22:949–962

    PubMed  Google Scholar 

  8. Herzog C, Ahle H, Mack MG, Maier B, Schwarz W, Zangos S, Jacobi V, Thalhammer A, Peters J, Ackermann H, Vogl TJ (2004) Traumatic injuries of the pelvis and thoracic and lumbar spine: does thin-slice multidetector-row CT increase diagnostic accuracy? Eur Radiol 14:1751–1760

    PubMed  CAS  Google Scholar 

  9. Ohashi K, El-Khoury GY, Bennett DL, Restrepo JM, Berbaum KS (2005) Orthopedic hardware complications diagnosed with multi-detector row CT. Radiology 237:570–577

    PubMed  Article  Google Scholar 

  10. Sunagawa T, Ochi M, Ishida O, Ono C, Ikuta Y (2003) Three-dimensional CT imaging of flexor tendon ruptures in the hand and wrist. J Comput Assist Tomogr 27:169–174

    PubMed  Article  Google Scholar 

  11. Ohashi K, El-Khoury GY, Bennett DL (2004) MDCT of tendon abnormalities using volume-rendered images. AJR Am J Roentgenol 182:161–165

    PubMed  CAS  Google Scholar 

  12. Mettler FA Jr, Wiest PW, Locken JA, Kelsey CA (2000) CT scanning: patterns of use and dose. J Radiol Prot 20:353–359

    PubMed  Article  Google Scholar 

  13. Kalra MK, Rizzo SM, Novelline RA (2005) Reducing radiation dose in emergency computed tomography with automatic exposure control techniques. Emerg Radiol 11:267–274

    PubMed  Article  Google Scholar 

  14. Saini S (2004) Multi-detector row CT: principles and practice for abdominal applications. Radiology 233:323–327

    PubMed  Article  Google Scholar 

  15. Rybicki F, Nawfel RD, Judy PF, Ledbetter S, Dyson RL, Halt PS, Shu KM, Nunez DB Jr (2002) Skin and thyroid dosimetry in cervical spine screening: two methods for evaluation and a comparison between a helical CT and radiographic trauma series. AJR Am J Roentgenol 179:933–937

    PubMed  Google Scholar 

  16. Bonel HM, Jager L, Frei KA, Galiano S, Srivastav SK, Flohr T, Reiser MF, Dinkel HP (2005) Optimization of MDCT of the wrist to achieve diagnostic image quality with minimum radiation exposure. AJR Am J Roentgenol 185:647–654

    PubMed  Google Scholar 

  17. Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

    PubMed  CAS  Google Scholar 

  18. Khursheed A, Hillier MC, Shrimpton PC, Wall BF (2002) Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol 75:819–830

    PubMed  CAS  Google Scholar 

  19. Fayad LM, Johnson P, Fishman EK (2005) Multidetector CT of musculoskeletal disease in the pediatric patient: principles, techniques, and clinical applications. Radiographics 25:603–618

    PubMed  Article  Google Scholar 

  20. Watura R, Cobby M, Taylor J (2004) Multislice CT in imaging of trauma of the spine, pelvis and complex foot injuries. Br J Radiol 77 Spec No 1:S46–S63

    PubMed  Article  Google Scholar 

  21. Linsenmaier U, Krotz M, Hauser H, Rock C, Rieger J, Bohndorf K, Pfeifer KJ, Reiser M (2002) Whole-body computed tomography in polytrauma: techniques and management. Eur Radiol 12:1728–1740

    PubMed  Article  Google Scholar 

  22. Falchi M, Rollandi GA (2004) CT of pelvic fractures. Eur J Radiol 50:96–105

    PubMed  Article  Google Scholar 

  23. Dahlen HC, Franck WM, Sabauri G, Amlang M, Zwipp H (2004) Fehlklassifikation extraartikulärer distaler Radiusfrakturen in konventionellen Röntgenaufnahmen. Vergleichende Untersuchung der Frakturmorphologie zwischen biplanarer Röntgendiagnostik und CT [Incorrect classification of extra-articular distal radius fractures by conventional X-rays. Comparison between biplanar radiologic diagnostics and CT assessment of fracture morphology]. Unfallchirurg 107:491–498

    PubMed  Article  CAS  Google Scholar 

  24. Wicky S, Blaser PF, Blanc CH, Leyvraz PF, Schnyder P, Meuli RA (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur Radiol 10:1227–1232

    PubMed  Article  CAS  Google Scholar 

  25. Ohashi K, El-Khoury GY, Abu-Zahra K, Berbaum K (2006) Interobserver agreement for Letournel acetabular fracture classification using MD-CT: are the standard Judet radiographic views necessary? Radiology (in press)

  26. Wintermark M, Mouhsine E, Theumann N, Mordasini P, van Melle G, Leyvraz PF, Schnyder P (2003) Thoracolumbar spine fractures in patients who have sustained severe trauma: depiction with multi-detector row CT. Radiology 227:681–689

    PubMed  Article  Google Scholar 

  27. Nunez DB Jr, Zuluaga A, Fuentes-Bernardo DA, Rivas LA, Becerra JL (1996) Cervical spine trauma: how much more do we learn by routinely using helical CT? Radiographics 16:1307–1318

    PubMed  Google Scholar 

  28. Hogan GJ, Mirvis SE, Shanmuganathan K, Scalea TM (2005) Exclusion of unstable cervical spine injury in obtunded patients with blunt trauma: is MR imaging needed when multi-detector row CT findings are normal? Radiology 237:106–113

    PubMed  Article  Google Scholar 

  29. Blackmore CC, Ramsey SD, Mann FA, Deyo RA (1999) Cervical spine screening with CT in trauma patients: a cost-effectiveness analysis. Radiology 212:117–125

    PubMed  CAS  Google Scholar 

  30. Weishaupt D, Grozaj AM, Willmann JK, Roos JE, Hilfiker PR, Marincek B (2002) Traumatic injuries: imaging of abdominal and pelvic injuries. Eur Radiol 12:1295–1311

    PubMed  Article  Google Scholar 

  31. Haapamäki VV, Kiuru MJ, Koskinen SK (2004) Multidetector CT in shoulder fractures. Emerg Radiol 11:89–94

    PubMed  Article  Google Scholar 

  32. Ring D, Jupiter JB, Zilberfarb J (2002) Posterior dislocation of the elbow with fractures of the radial head and coronoid. J Bone Joint Surg Am 84-A:547–551

    PubMed  Google Scholar 

  33. Biondetti PR, Vannier MW, Gilula LA, Knapp R (1987) Wrist: coronal and transaxial CT scanning. Radiology 163:149–151

    PubMed  CAS  Google Scholar 

  34. Johnston GH, Friedman L, Kriegler JC (1992) Computerized tomographic evaluation of acute distal radial fractures. J Hand Surg [Am] 17:738–744

    Article  CAS  Google Scholar 

  35. Rozental TD, Bozentka DJ, Katz MA, Steinberg DR, Beredjiklian PK (2001) Evaluation of the sigmoid notch with computed tomography following intra-articular distal radius fracture. J Hand Surg [Am] 26:244–251

    Article  CAS  Google Scholar 

  36. Wechsler RJ, Wehbe MA, Rifkin MD, Edeiken J, Branch HM (1987) Computed tomography diagnosis of distal radioulnar subluxation. Skelet Radiol 16:1–5

    Article  CAS  Google Scholar 

  37. Nakamura R, Horii E, Imaeda T, Nakao E (1996) Criteria for diagnosing distal radioulnar joint subluxation by computed tomography. Skelet Radiol 25:649–653

    Article  CAS  Google Scholar 

  38. Kiuru MJ, Haapamaki VV, Koivikko MP, Koskinen SK (2004) Wrist injuries; diagnosis with multidetector CT. Emerg Radiol 10:182–185

    PubMed  Article  Google Scholar 

  39. Breederveld RS, Tuinebreijer WE (2004) Investigation of computed tomographic scan concurrent criterion validity in doubtful scaphoid fracture of the wrist. J Trauma 57:851–854

    PubMed  CAS  Article  Google Scholar 

  40. Groves AM, Cheow HK, Balan KK, Courtney HM, Bearcroft PW, Dixon AK (2005) Case report: false negative 16 detector multislice CT for scaphoid fracture. Br J Radiol 78:57–59

    PubMed  Article  CAS  Google Scholar 

  41. Kaneko K, Ono A, Uta S, Mogami A, Shimamura Y, Iwase H, Kurosawa H (2002) Hamatometacarpal fracture-dislocation: distinctive three dimensional computed tomographic appearance. Chir Main 21:41–45

    PubMed  Article  CAS  Google Scholar 

  42. Chan PSH, Klimkiewicz JJ, Luchetti WT, Esterhai JL, Kneeland JB, Dalinka MK, Heppenstall RB (1997) Impact of CT scan on treatment plan and fracture classification of tibial plateau fractures. J Orthop Trauma 11:484–489

    PubMed  Article  CAS  Google Scholar 

  43. Daftary A, Haims AH, Baumgaertner MR (2005) Fractures of the calcaneus: a review with emphasis on CT. Radiographics 25:1215–1226

    PubMed  Article  Google Scholar 

  44. Gupta A, Ghalambor N, Nihal A, Trepman E (2003) The modified Palmer lateral approach for calcaneal fractures: wound healing and postoperative computed tomographic evaluation of fracture reduction. Foot Ankle Int 24:744–753

    PubMed  Google Scholar 

  45. Haapamäki V, Kiuru M, Koskinen S (2004) Lisfranc fracture-dislocation in patients with multiple trauma: diagnosis with multidetector computed tomography. Foot Ankle Int 25:614–619

    PubMed  Google Scholar 

  46. Preidler KW, Peicha G, Lajtai G, Seibert FJ, Fock C, Szolar DM, Raith H (1999) Conventional radiography, CT, and MR imaging in patients with hyperflexion injuries of the foot: diagnostic accuracy in the detection of bony and ligamentous changes. AJR Am J Roentgenol 173:1673–1677

    PubMed  CAS  Google Scholar 

  47. Sunagawa T, Ishida O, Ishiburo M, Suzuki O, Yasunaga Y, Ochi M (2005) Three-dimensional computed tomography imaging: its applicability in the evaluation of extensor tendons in the hand and wrist. J Comput Assist Tomogr 29:94–98

    PubMed  Article  Google Scholar 

  48. Ho RT, Smith D, Escobedo E (2001) Peroneal tendon dislocation: CT diagnosis and clinical importance. AJR Am J Roentgenol 177:1193

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Geijer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geijer, M., El-Khoury, G.Y. MDCT in the evaluation of skeletal trauma: principles, protocols, and clinical applications. Emerg Radiol 13, 7–18 (2006). https://doi.org/10.1007/s10140-006-0509-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-006-0509-5

Keywords

  • Tomography
  • Spiral-computed
  • Fractures
  • Bone
  • Multiple trauma
  • Tendon injuries
  • Spinal injuries
  • Dislocations