Skip to main content
Log in

Muscle Transcriptome Sequencing Revealed Thermal Stress–Responsive Regulatory Genes in Farmed Rohu, Labeo rohita (Hamilton, 1822)

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Rohu, Labeo rohita, is one of the most important aquaculture species in the Indian subcontinent. Understanding the molecular-level physiological responses to thermal stress or climate change is essential. In the present work, transcriptome sequencing was carried out in the muscle tissue of the rohu in response to heat stress (35 °C) in comparison with the control (28 °C). A total of 125 Gb of sequence data was generated, and the raw-reads were filtered and trimmed, which resulted in 484 million quality reads. Reference-based assembly of reads was performed using L. rohita genome, and a total of 90.17% of reads were successfully mapped. A total of 37,462 contigs were assembled with an N50 value of 1854. The differential expression analysis revealed a total of 107 differentially expressed genes (DEGs) (15 up-, 37 down-, and 55 neutrally regulated) as compared to the control group (Log2FC > 2, P < 0.05). Gene enrichment analysis of DEGs indicates that transcripts were associated with molecular, biological, and cellular activities. The randomly selected differentially expressed transcripts were validated by RT-qPCR and found consistent expression patterns in line with the RNA-seq data. Several transcripts such as SERPINE1(HSP47), HSP70, HSP90alpha, Rano class II histocompatibility A beta, PGC-1 and ERR-induced regulator, proto-oncogene c-Fos, myozenin2, alpha-crystallin B chain-like protein, angiopoietin-like protein 8, and acetyl-CoA carboxylases have been identified in muscle tissue of rohu that are associated with stress/immunity. This study identified the key biomarker SERPINE1 (HSP47), which showed significant upregulation (~ 2- to threefold) in muscle tissue of rohu exposed to high temperature. This study can pave a path for the identification of stress-responsive biomarkers linked with thermal adaptations in the farmed carps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data have been deposited to the National Center for Biotechnology Information (NCBI) under accession numbers SRR23215594, SRR23215970, SRR23216425, and SRR23217297.

References

  • Akbarzadeh A, Gunther OP, Houde AL, Li S, Ming TJ, Jeffries KM, Hinch SG, Miller KM (2018) Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics 19:749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arellano-Aguilar O, Montoya RM, Garcia CM (2009) Endogenous functions and expression of cytochrome P450 enzymes in teleost fish: a review. Rev Fish Sci 17:541–556

    Article  CAS  Google Scholar 

  • Ariyasiri K, Choi TI, Gerlai R, Kim CH (2021) Acute ethanol induces behavioral changes and alters c-Fos expression in specific brain regions, including the mammillary body, in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 109:110264

    Article  CAS  PubMed  Google Scholar 

  • Ashaf-Ud-Doulah M, Islam SMM, Zahangir MM, Islam MS, Brown C, Shahjahan M (2021) Increased water temperature interrupts embryonic and larval development of Indian major carp rohu Labeo rohita. Aquacult Int 29:711–722

    Article  CAS  Google Scholar 

  • Ashaf-Ud-Doulah M, Shahjahan M, Islam SMM, Al-Emran M, Rahman MS, Hossain MAR (2019) Thermal stress causes nuclear and cellular abnormalities of peripheral erythrocytes in Indian major carp, rohu Labeo rohita. J Therm Biol 86:102450

    Article  CAS  PubMed  Google Scholar 

  • Atwood H, Tomasso J, Webb K, Gatlin Iii D (2003) Low-temperature tolerance of Nile tilapia, Oreochromis niloticus: effects of environmental and dietary factors. Aquac Res 34:241–251

    Article  Google Scholar 

  • Barat A, Sahoo PK, Kumar R, Goel C, Singh AK (2016) Transcriptional response to heat shock in liver of snow trout (Schizothorax richardsonii)–a vulnerable Himalayan Cyprinid fish. Funct Integr Genomics 16:203–213

    Article  CAS  PubMed  Google Scholar 

  • Beemelmanns A, Zanuzzo FS, Xue X, Sandrelli RM, Rise ML, Gamperl AK (2021) The transcriptomic responses of Atlantic salmon (Salmo salar) to high temperature stress alone, and in combination with moderate hypoxia. BMC Genomics 22:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmane M, Krishnani K, Sarkar B, Sajjanar B, Kumar S, Nakhawa A, Minhas P (2014) Growth, thermal tolerance and oxygen consumption in rohu, Labeo rohita early fry acclimated to four temperatures. Afr J Agric Res 9:854–858

    Article  Google Scholar 

  • Camporeale G, Zempleni J (2003) Oxidative folding of interleukin-2 is impaired in flavin-deficient Jurkat cells, causing intracellular accumulation of interleukin-2 and increased expression of stress response genes. J Nutr 133:668–672

    Article  CAS  PubMed  Google Scholar 

  • Chatchaiphan S, Srisapoome P, Kim JH, Devlin RH, Na-Nakorn U (2017) De novo transcriptome characterization and growth-related gene expression profiling of diploid and triploid bighead catfish (Clarias macrocephalus Gunther, 1864). Mar Biotechnol (NY) 19:36–48

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee N, Pal A, Saydmohammed M, Das T, Mukherjee S (2004) Thermal tolerance and oxygen consumption of Labeo rohita and Cyprinus carpio early fingerings acclimated to three different temperatures. J Therm Biol 29:265–270

    Article  Google Scholar 

  • Chen J, Cui Y, Yan J, Jiang J, Cao X, Gao J (2018a) Molecular characterization of elongase of very long-chain fatty acids 6 (elovl6) genes in Misgurnus anguillicaudatus and their potential roles in adaptation to cold temperature. Gene 666:134–144

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018b) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Nowak RB, Fowler VM (2017) The lens actin filament cytoskeleton: diverse structures for complex functions. Exp Eye Res 156:58–71

    Article  CAS  PubMed  Google Scholar 

  • Cheng CF, Ku HC, Lin H (2018) PGC-1alpha as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci 19:3447

  • Chung HS, Lee MJ, Hwang SY, Lee HJ, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Kim SM, Choi KM (2016) Circulating angiopoietin-like protein 8 (ANGPTL8) and ANGPTL3 concentrations in relation to anthropometric and metabolic profiles in Korean children: a prospective cohort study. Cardiovasc Diabetol 15:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, Mcpherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Angelo L, Lossi L, Merighi A, De Girolamo P (2016) Anatomical features for the adequate choice of experimental animal models in biomedicine: I. Fishes Ann Anat 205:75–84

    Article  PubMed  Google Scholar 

  • Dai Y, Shen Y, Guo J, Yang H, Chen F, Zhang W, Wu W, Xu X, Li J (2022) Glycolysis and gluconeogenesis are involved of glucose metabolism adaptation during fasting and re-feeding in black carp (Mylopharyngodon piceus). Aquac Fish. https://doi.org/10.1016/j.aaf.2022.04.003

  • Danzmann RG, Kocmarek AL, Norman JD, Rexroad CE III, Palti Y (2016) Transcriptome profiling in fast versus slow-growing rainbow trout across seasonal gradients. BMC Genomics 17:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Dara PK, Geetha A, Mohanty U, Raghavankutty M, Mathew S, Nagarajarao RC, Rangasamy A (2021) Extraction and characterization of myofibrillar proteins from different meat sources: a comparative study. J Bioresour Bioprod 6:367–378

    Article  CAS  Google Scholar 

  • Deng W, Sun J, Chang ZG, Gou NN, Wu WY, Luo XL, Zhou JS, Yu HB, Ji H (2020) Energy response and fatty acid metabolism in Onychostoma macrolepis exposed to low-temperature stress. J Therm Biol 94:102725

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Zhao X, Zhan Q, Cui L, Sun Q, Lin L, Wang W, Liu H (2017) Characterization and expression analysis of an intelectin gene from Megalobrama amblycephala with excellent bacterial binding and agglutination activity. Fish Shellfish Immunol 61:100–110

    Article  CAS  PubMed  Google Scholar 

  • Down M, Power M, Smith SI, Ralston K, Spanevello M, Burns GF, Boyd AW (2005) Cloning and expression of the large zebrafish protocadherin gene, Fat. Gene Expr Patterns 5:483–490

    Article  CAS  PubMed  Google Scholar 

  • Feng M, Swevers L, Sun J (2022) Hemocyte clusters defined by scRNA-Seq in bombyx mori: in silico analysis of predicted marker genes and implications for potential functional roles. Front Immunol 13:852702

  • Fuchs B, Zumstein M, Regenfelder F, Steinmann P, Fuchs T, Husmann K, Hellermann J, Jost B, Hodler J, Born W, Gerber C (2008) Upregulation of alpha-skeletal muscle actin and myosin heavy polypeptide gene products in degenerating rotator cuff muscles. J Orthop Res 26:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa Y, Kozono K, Esaka M, Iijima N, Nagamatsu Y, Yoshida M, Uematsu K (2006) Molecular cloning and effect of c-Fos mRNA on pharmacological stimuli in the goldfish brain. Comp Biochem Physiol Part D Genomics Proteomics 1:253–259

    Article  PubMed  Google Scholar 

  • Garcia De La Serrana D, Estevez A, Andree K, Johnston IA (2012) Fast skeletal muscle transcriptome of the gilthead sea bream (Sparus aurata) determined by next generation sequencing. BMC Genomics 13:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo W, Tzioutziou NA, Stephen G, Milne I, Calixto CP, Waugh R, Brown JWS, Zhang R (2021) 3D RNA-seq: a powerful and flexible tool for rapid and accurate differential expression and alternative splicing analysis of RNA-seq data for biologists. RNA Biol 18:1574–1587

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Hoshijima M (2006) Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol 290:H1313–H1325

    Article  CAS  PubMed  Google Scholar 

  • Hsieh S, Kuo C-M (2005) Stearoyl–CoA desaturase expression and fatty acid composition in milkfish (Chanos chanos) and grass carp (Ctenopharyngodon idella) during cold acclimation. Comp Biochem Physiol B Biochem Mol Biol 141:95–101

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Chitnis N, Monos D, Dinh A (2021) Next-generation sequencing technologies: an overview. Hum Immunol 82:801–811

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Ren M, Liang H, Ge X, Xu H, Wu L (2022) Transcriptome analysis of the effect of high-temperature on nutrient metabolism in juvenile grass carp (Ctenopharyngodon idellus). Gene 809:146035

    Article  CAS  PubMed  Google Scholar 

  • Huss JM, Kopp RP, Kelly DP (2002) Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem 277:40265–40274

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Taniguchi H, Fukagai K, Okamuro S, Kobayashi A (2015) Inhibitory mechanism of FAT4 gene expression in response to actin dynamics during Src-induced carcinogenesis. PLoS ONE 10:e0118336

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Wu Y, Huang D, Ren X, Wang Y (2017) Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella. Fish Physiol Biochem 43:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Langmead B (2015) Salzberg SLHISAT. A fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovrov O, Kristensen KK, Larsson E, Ploug M, Olivecrona G (2019) On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity. J Lipid Res 60:783–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa R, Furgała-Selezniow G, Mamcarz A, Lach M, Kucharczyk D (2014) Influence of temperature on the growth and survivability of sichel larvae Pelecus cultratus reared under controlled conditions. Ichthyol Res 62:163–170

    Article  Google Scholar 

  • Lemoine CM, Genge CE, Moyes CD (2008) Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J Exp Biol 211:1448–1455

    Article  CAS  PubMed  Google Scholar 

  • Li G, Chen J, Xie P, Jiang Y, Wu L, Zhang X (2011) Protein expression profiling in the zebrafish (Danio rerio) embryos exposed to the microcystin-LR. Proteomics 11:2003–2018

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang J, Liu Z, Zhou Y, Xia B, Wang Y, Kang Y, Wang J (2017) Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss). Gene 619:1–9

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  • Liang L, Chang Y, He X, Tang R (2015) Transcriptome analysis to identify cold-responsive genes in amur carp (Cyprinus carpio haematopterus). PLoS ONE 10:e0130526

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang X, Sun F, Zhang J, Feng J, Liu H, Rajendran KV, Sun L, Zhang Y, Jiang Y, Peatman E, Kaltenboeck L, Kucuktas H, Liu Z (2013) RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol Genomics 45:462–476

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (San Diego, Calif) 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Logan CA, Somero GN (2011) Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). Am J Physiol Regul Integr Comp Physiol 300:R1373–R1383

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Li L, Li Q, He X, Cui Z (2012) Transcriptomic characterization of temperature stress responses in larval zebrafish. PLoS ONE 7:e37209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Yan J, Song G, Li X, Li X, Li Q, Cui Z (2015) Transcriptional events co-regulated by hypoxia and cold stresses in Zebrafish larvae. BMC Genomics 16:385

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu K, Policar T, Song X, Rahimnejad S (2020) Molecular characterization of PGC-1beta (PPAR gamma coactivator 1beta) and its roles in mitochondrial biogenesis in blunt snout bream (Megalobrama amblycephala). Int J Mol Sci 21:1935

  • Lyu L, Wen H, Li Y, Li J, Zhao J, Zhang S, Song M, Wang X (2018) Deep transcriptomic analysis of black rockfish (Sebastes schlegelii) provides new insights on responses to acute temperature stress. Sci Rep 8:1–16

    Article  Google Scholar 

  • Mahanty A, Mohanty S, Mohanty BP (2017a) Dietary supplementation of curcumin augments heat stress tolerance through upregulation of nrf-2-mediated antioxidative enzymes and hsps in Puntius sophore. Fish Physiol Biochem 43:1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Mahanty A, Purohit GK, Yadav RP, Mohanty S, Mohanty BP (2017b) hsp90 and hsp47 appear to play an important role in minnow Puntius sophore for surviving in the hot spring run-off aquatic ecosystem. Fish Physiol Biochem 43:89–102

    Article  CAS  PubMed  Google Scholar 

  • Majumder S, Majumdar N, Ghosh P, Saikia SK, Saha SK (2018) Rohu Labeo rohita (Hamilton, 1822) changes feeding strategy throughout its ontogeny an explanation from feeding ecology. Int J Sci Res Biol Sci 5:92–96

    Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Marandel L, Panserat S, Plagnes-Juan E, Arbenoits E, Soengas JL, Bobe J (2017) Evolutionary history of glucose-6-phosphatase encoding genes in vertebrate lineages: towards a better understanding of the functions of multiple duplicates. BMC Genomics 18:342

    Article  PubMed  PubMed Central  Google Scholar 

  • Mennigen JA, Plagnes-Juan E, Figueredo-Silva CA, Seiliez I, Panserat S, Skiba-Cassy S (2014) Acute endocrine and nutritional co-regulation of the hepatic omy-miRNA-122b and the lipogenic gene fas in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol B Biochem Mol Biol 169:16–24

    Article  CAS  PubMed  Google Scholar 

  • Mininni AN, Milan M, Ferraresso S, Petochi T, Di Marco P, Marino G, Livi S, Romualdi C, Bargelloni L, Patarnello T (2014) Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature. BMC Genom 15:1–12

    Article  Google Scholar 

  • Molina A, Dettleff P, Valenzuela-Muñoz V, Gallardo-Escarate C, Valdés JA (2023) High-temperature stress induces autophagy in rainbow trout skeletal muscle. Fishes 8:303

    Article  Google Scholar 

  • Monroig O, Shu-Chien AC, Kabeya N, Tocher DR, Castro LFC (2022) Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog Lipid Res 86:101157

    Article  CAS  PubMed  Google Scholar 

  • Narum SR, Campbell NR (2015) Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genomics 16:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Otis JP, Zeituni EM, Thierer JH, Anderson JL, Brown AC, Boehm ED, Cerchione DM, Ceasrine AM, Avraham-Davidi I, Tempelhof H, Yaniv K, Farber SA (2015) Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech 8:295–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan F, Zarate JM, Tremblay GC, Bradley TM (2000) Cloning and characterization of salmon hsp90 cDNA: upregulation by thermal and hyperosmotic stress. J Exp Zool 287:199–212

    Article  CAS  PubMed  Google Scholar 

  • Posner M, Kiss AJ, Skiba J, Drossman A, Dolinska MB, Hejtmancik JF, Sergeev YV (2012) Functional validation of hydrophobic adaptation to physiological temperature in the small heat shock protein αA-crystallin. PLoS ONE 7:e34438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian B, Xue L (2016) Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress. Mar Genomics 25:95–102

    Article  PubMed  Google Scholar 

  • Qiang J, Tao Y-F, Zhu J-H, Lu S-Q, Cao Z-M, Ma J-L, He J, Xu P (2022) Effects of heat stress on follicular development and atresia in Nile tilapia (Oreochromis niloticus) during one reproductive cycle and its potential regulation by autophagy and apoptosis. Aquaculture 555:738171

  • Qu J, Ko CW, Tso P, Bhargava A (2019) Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 8:319

  • Rasal KD, Chakrapani V, Pandey AK, Rasal AR, Sundaray JK, Ninawe A, Jayasankar P (2017) Status and future perspectives of single nucleotide polymorphisms (SNPs) markers in farmed fishes: way ahead using next generation sequencing. Gene Rep 6:81–86

    Article  Google Scholar 

  • Rasal KD, Iquebal MA, Dixit S, Vasam M, Raza M, Sahoo L, Jaiswal S, Nandi S, Mahapatra KD, Rasal A, Udit UK, Meher PK, Murmu K, Angadi U, Rai A, Kumar D, Sundaray JK (2020) Revealing alteration in the hepatic glucose metabolism of genetically improved carp, Jayanti rohu Labeo rohita fed a high carbohydrate diet using transcriptome sequencing. Int J Mol Sci 21:8180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasal KD, Sundaray JK (2020) Status of genetic and genomic approaches for delineating biological information and improving aquaculture production of farmed rohu, Labeo rohita (Ham, 1822). Rev Aquac 12:2466–2480

    Article  Google Scholar 

  • Rebl A, Verleih M, Nipkow M, Altmann S, Bochert R, Goldammer T (2018) Gradual and acute temperature rise induces crossing endocrine, metabolic, and immunological pathways in maraena whitefish (Coregonus maraena). Front Genet 9:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Roychowdhury P, Aftabuddin M, Pati MK (2021) Thermal stress–induced oxidative damages in the liver and associated death in fish, Labeo rohita. Fish Physiol Biochem 47:21–32

    Article  CAS  PubMed  Google Scholar 

  • Schulze TT, Ali JM, Bartlett ML, Mcfarland MM, Clement EJ, Won HI, Sanford AG, Monzingo EB, Martens MC, Hemsley RM, Kumar S, Gouin N, Kolok AS, Davis PH (2016) De novo assembly and analysis of the chilean pencil catfish Trichomycterus areolatus transcriptome. J Genomics 4:29–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahjahan M, Zahangir MM, Islam SMM, Ashaf-Ud-Doulah M, Ando H (2021) Higher acclimation temperature affects growth of rohu (Labeo rohita) through suppression of GH and IGFs genes expression actuating stress response. J Therm Biol 100:103032

    Article  CAS  PubMed  Google Scholar 

  • Shearston K, Tan JTM, Cochran BJ, Rye KA (2022) Inhibition of vascular inflammation by apolipoprotein A-IV. Front Cardiovasc Med 9:901408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi KP, Dong SL, Zhou YG, Li Y, Gao QF, Sun DJ (2019) RNA-seq reveals temporal differences in the transcriptome response to acute heat stress in the Atlantic salmon (Salmo salar). Comp Biochem Physiol Part D Genomics Proteomics 30:169–178

    Article  CAS  PubMed  Google Scholar 

  • Shin SC, Kim SJ, Lee JK, Ahn DH, Kim MG, Lee H, Lee J, Kim BK, Park H (2012) Transcriptomics and comparative analysis of three antarctic notothenioid fishes. PLoS ONE 7:e43762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaray JK, Rasal KD, Chakrapani V, Swain P, Kumar D, Ninawe AS, Nandi S, Jayasankar P (2016) Simple sequence repeats (SSRs) markers in fish genomic research and their acceleration via next-generation sequencing and computational approaches. Aquacult Int 24:1089–1102

    Article  CAS  Google Scholar 

  • Swain P, Sasmal A, Nayak SK, Barik SK, Mishra SS, Mohapatra KD, Swain SK, Saha JN, Sen AK, Jayasankar P (2016) Evaluation of selected metal nanoparticles on hatching and survival of larvae and fry of Indian major carp, rohu (Labeo rohita). Aquac Res 47:498–511

    Article  CAS  Google Scholar 

  • Takai Y, Takamura T, Enoki S, Sato M, Kato-Unoki Y, Qiu X, Shimasaki Y, Oshima Y (2020) Transcriptome analysis of medaka (Oryzias latipes) exposed to tributyltin. Jpn J Environ Toxicol 23:10–21

    Google Scholar 

  • Takano T, Sha Z, Peatman E, Terhune J, Liu H, Kucuktas H, Li P, Edholm ES, Wilson M, Liu Z (2008) The two channel catfish intelectin genes exhibit highly differential patterns of tissue expression and regulation after infection with Edwardsiella ictaluri. Dev Comp Immunol 32:693–705

    Article  CAS  PubMed  Google Scholar 

  • Tan E, Kinoshita S, Suzuki Y, Ineno T, Tamaki K, Kera A, Muto K, Yada T, Kitamura S, Asakawa S (2016) Different gene expression profiles between normal and thermally selected strains of rainbow trout, Oncorhynchus mykiss, as revealed by comprehensive transcriptome analysis. Gene 576:637–643

    Article  CAS  PubMed  Google Scholar 

  • Thorstensen MJ, Turko AJ, Heath DD, Jeffries KM, Pitcher TE (2022) Acute thermal stress elicits interactions between gene expression and alternative splicing in a fish of conservation concern. J Exp Biol 225:jeb244162

  • Timmins-Schiffman E, Coffey WD, Hua W, Nunn BL, Dickinson GH, Roberts SB (2014) Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas. BMC Genomics 15:951

    Article  PubMed  PubMed Central  Google Scholar 

  • Topal A, Özdemir S, Arslan H, Çomaklı S (2021) How does elevated water temperature affect fish brain? (a neurophysiological and experimental study: assessment of brain derived neurotrophic factor, cFOS, apoptotic genes, heat shock genes, ER-stress genes and oxidative stress genes). Fish Shellfish Immunol 115:198–204

    Article  CAS  PubMed  Google Scholar 

  • Trueman R, Tiku P, Caddick M, Cossins A (2000) Thermal thresholds of lipid restructuring and delta (9)-desaturase expression in the liver of carp (Cyprinus carpio L.). J Exp Biol 203:641–650

    Article  CAS  PubMed  Google Scholar 

  • Uno T, Ishizuka M, Itakura T (2012) Cytochrome P450 (CYP) in fish. Environ Toxicol Pharmacol 34:1–13

    Article  CAS  PubMed  Google Scholar 

  • Vagner M, Santigosa E (2011) Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: a review. Aquaculture 315:131–143

    Article  CAS  Google Scholar 

  • Van Schaftingen E, Gerin I (2002) The glucose-6-phosphatase system. Biochem J 362:513–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasseur DA, Delong JP, Gilbert B, Greig HS, Harley CD, Mccann KS, Savage V, Tunney TD, O’connor MI (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc Biol Sci 281:20132612

    PubMed  PubMed Central  Google Scholar 

  • Veilleux HD, Ryu T, Donelson JM, Ravasi T, Munday PL (2018) Molecular response to extreme summer temperatures differs between two genetically differentiated populations of a coral reef fish. Front Mar Sci 5:349

  • Wang F, Pearson KJ, Davidson WS, Tso P (2013) Specific sequences in N termini of apolipoprotein A-IV modulate its anorectic effect. Physiol Behav 120:136–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu Z, Li Z, Shi H, Kang Y, Wang J, Huang J, Jiang L (2016) Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss. Fish Physiol Biochem 42:701–710

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yu W, Li S, Guo D, He J, Wang Y (2022) Acetyl-CoA carboxylases and diseases. Front Oncol 12:836058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Cai WJ, Liu HK, Han D, Zhu XM, Yang YX, Jin JY, Xie SQ (2019) Effects of photoperiod on growth, lipid metabolism and oxidative stress of juvenile gibel carp (Carassius auratus). J Photochem Photobiol B 198:111552

    Article  CAS  PubMed  Google Scholar 

  • Wu DM, Wang S, Wen X, Han XR, Wang YJ, Fan SH, Zhang ZF, Shan Q, Lu J, Zheng YL (2018) MircoRNA-1275 promotes proliferation, invasion and migration of glioma cells via SERPINE1. J Cell Mol Med 22:4963–4974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Li D, Feng L, Zhang C, Xi D, Liu H, Yan C, Xu Z, Zhang Y, Li Y, Yan T, He Z, Wu J, Gong Q, Du J, Huang X, Du X (2023) Transcriptome analysis reveals the high temperature induced damage is a significant factor affecting the osmotic function of gill tissue in Siberian sturgeon (Acipenser baerii). BMC Genomics 24:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Zhao T, Ma A, Huang Z, Liu Z, Cui W, Zhang J, Zhu C, Guo X, Yuan C (2020) Metabolic responses in Scophthalmus maximus kidney subjected to thermal stress. Fish Shellfish Immunol 103:37–46

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Zhang Y, Meng W, Zhong X, Shan Y, Gao T (2021) Comparative transcriptomic analysis brings new insights into the response to acute temperature acclimation in burbot (Lota lota lota). Aquac Rep 20:100657

    Article  Google Scholar 

  • Yang Y, Yu H, Li H, Wang A, Yu HY (2016) Effect of high temperature on immune response of grass carp (Ctenopharyngodon idellus) by transcriptome analysis. Fish Shellfish Immunol 58:89–95

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Ye F, He L, Luo B, Yang F, Cui C, Zhao X, Yin H, Li D, Xu H, Wang Y, Zhu Q (2017) Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation. PLoS ONE 12:e0189476

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu J, Liang X, Chen J, Hong J, Li L, He Q, Cai X (2016) History and progression of fat cadherins in health and disease. Onco Targets Ther 9:7337–7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, Indian Council of Agricultural Research—NIASM, Baramati, Pune, India, for providing the research facilities and the Director, Indian Council of Agricultural Research –CIFE, Mumbai, for providing the facility for data analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Kishore K. Krishnani, Manoj P. Brahmane; Methodology: Kiran D. Rasal, Kishore K. Krishnani, Manoj P. Brahmane, Dhalongsaih Reang, Sachin S. Pawar, Arvind A. Sonwane, R Rajeshkannan; Investigation: Pokanti Vinay Kumar, Arvind A. Sonwane, Nitin P. Kurade, Mukesh P. Bhendarkar, Dhalongsaih Reang, Data processing: Pokanti Vinay Kumar; Writing—original draft preparation: Pokanti Vinay Kumar, Kiran D. Rasal, Manoj P. Brahmane, R Rajeshkannan; Writing—review and editing: Pokanti Vinay Kumar, Kiran D. Rasal, Dhalongsaih Reang, Arvind A. Sonwane, Naresh S. Nagpure, Manoj P. Brahmane, Kishore K. Krishnani; Result validation: Pokanti Vinay Kumar, Arpit Acharya, Diganta Dey; Lab Work: Pokanti Vinay Kumar; Resources: Naresh S. Nagpure, Arvind A. Sonwane, Nitin P. Kurade; Supervision: Manoj P. Brahmane.

Corresponding author

Correspondence to Manoj P. Brahmane.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3781 KB)

Supplementary file2 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.V., Rasal, K.D., Acharya, A. et al. Muscle Transcriptome Sequencing Revealed Thermal Stress–Responsive Regulatory Genes in Farmed Rohu, Labeo rohita (Hamilton, 1822). Mar Biotechnol 25, 1057–1075 (2023). https://doi.org/10.1007/s10126-023-10259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10259-8

Keywords

Navigation