Skip to main content
Log in

Comparative Transcriptome and WGCNA Analysis Reveal Molecular Responses to Salinity Change in Larvae of the Iwagaki Oyster Crassostrea Nippona

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The Iwagaki oyster Crassostrea nippona is an important aquaculture species with significant potential for large-scale oyster farming. It is susceptible to the fluctuated salinity in the coastal area. In this study, we compared the transcriptome of Crassostrea nippona larvae under variant conditions with low-salinity stress (28, 20, 15, 10, and 5 practical salinity units (psu)) for 24 h. KEGG enrichment analysis of differentially expressed genes (DEGs) from pairwise comparisons identified several free amino acid metabolism pathway (taurine and hypotaurine, arginine and proline, glycine, and beta-alanine) contributing to the salinity change adaptation and activated “lysosome” and “apoptosis” pathway in response to the low-salinity stress (10 and 5 psu). Trend analysis revealed sustained upregulation of transmembrane transport–related genes (such as SLC family) and downregulation of ribosomal protein synthesis genes faced with decreasing salinities. In addition, 9 biomarkers in response to low-salinity stress were identified through weighted gene co-expression network analysis (WGCNA) and validated by qRT-PCR. Our transcriptome analysis provides a comprehensive view of the molecular mechanisms and regulatory networks underlying the adaptive responses of oyster larvae to hypo-salinity conditions. These findings contribute to our understanding of the complex biological processes involved in oyster resilience and adaptation to changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

All data generated or analyzed during this study are included in this article and supplementary information.

References

  • Berger VJ, Kharazova AD (1997) Mechanisms of salinity adaptations in marine molluscs. In: Interactions and adaptation strategies of marine organisms. Springer 121:115–126

  • Botta R, Asche F, Borsum JS, Camp EV (2020) A review of global oyster aquaculture production and consumption. Mar Policy 117:103952

    Article  Google Scholar 

  • Bourque CW (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci 9:519–531

    Article  CAS  PubMed  Google Scholar 

  • Bradley TJ (2009) Animal osmoregulation. Oxford University Press

    Google Scholar 

  • Chen MQ, Yu G, Ma ZH, Li YN, Xing KW, Wang L (2016) Effect of salinity changes on haemocyte of pearl oyster Pinctada Martensii. J Coast Life Med 4:757–759

    Article  CAS  Google Scholar 

  • Droga-Mazovec G, Bojič L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B (2008) Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 283:19140–19150

    Article  CAS  PubMed  Google Scholar 

  • Ertl NG, O’Connor WA, Elizur A (2019) Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: thermal and low salinity stress, and their synergistic effect. Mar Genomics 43:19–32

    Article  PubMed  Google Scholar 

  • Evans TG, Kültz D (2020) The cellular stress response in fish exposed to salinity fluctuations. J Exp Zool 333:421–435

    Article  Google Scholar 

  • George MN, Cattau O, Middleton MA, Lawson D, Vadopalas B, Gavery M, Roberts SB (2023) Triploid Pacific oysters exhibit stress response dysregulation and elevated mortality following heatwaves. Glob Chang Biol. https://doi.org/10.1111/gcb.16880

  • Gong J, Li Q, Yu H, Liu S, Kong L (2022) Effects of low salinity on hemolymph osmolality and transcriptome of the Iwagaki oyster, Crassostrea nippona. Fish Shellfish Immunol 126:211–216

    Article  CAS  PubMed  Google Scholar 

  • Griffiths JS, Johnson KM, Sirovy KA, Yeats MS, Pan FT, La Peyre JF, Kelly MW (2021) Transgenerational plasticity and the capacity to adapt to low salinity in the Eastern oyster, Crassostrea virginica. Proc R Soc B Biol Sci 288:20203118

    Article  Google Scholar 

  • Gunter G (1955) Mortality of oysters and abundance of certain associates as related to salinity. Ecol 36:601–605

    Article  Google Scholar 

  • Hosoi M, Kubota S, Toyohara M, Toyohara H, Hayashi I (2003) Effect of salinity change on free amino acid content in Pacific oyster. Fisheries Sci 69:395–400

    Article  CAS  Google Scholar 

  • Hosoi M, Shinzato C, Takagi M, Hosoi-Tanabe S, Sawada H, Terasawa E, Toyohara H (2007) Taurine transporter from the giant Pacific oyster Crassostrea gigas: function and expression in response to hyper-and hypo-osmotic stress. Fisheries Sci 73:385–394

    Article  CAS  Google Scholar 

  • Hu X, Hu X, Hu B, Wen C, Xie Y, Wu D, Tao Z, Li A, Gao Q (2014) Molecular cloning and characterization of cathepsin L from freshwater mussel, Cristaria plicata. Fish Shellfish Immunol 40:446–454

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Jiang X, Sun M, Dupont S, Huang W, Hu M, Li Q, Wang Y (2018) Effects of copper on hemocyte parameters in the estuarine oyster Crassostrea rivularis under low pH conditions. Aquat Toxicol 203:61–68

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Fujio Y, Hirata M, Takatani T, Matsuda T, Muraoka S, Takahashi K, Azuma J (2004) Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells. Biochem J 382:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko GWK, Dineshram R, Campanati C, Chan VB, Havenhand J, Thiyagarajan V (2014) Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the Pacific oyster. Environ Sci Technol 48:10079–10088

    Article  CAS  PubMed  Google Scholar 

  • La Peyre MK, Geaghan J, Decossas G, Peyre JFL (2016) Analysis of environmental factors influencing salinity patterns, oyster growth, and mortality in lower Breton Sound estuary, Louisiana, using 20 years of data. J Coast Res 32:519–530

    Article  Google Scholar 

  • Leaf A (1959) Maintenance of concentration gradients and regulation of cell volume. Ann N Y Acad Sci 72:396–404

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Lee MC, Puthumana J, Park JC, Kang S, Hwang DS, Shin KH, Pak HG, Souissi S, Om AS, Lee JS, Han J (2017) Effects of salinity on growth, fatty acid synthesis, and expression of stress response genes in the cyclopoid copepod Paracyclopina nana. Aquaculture 470:182–189

    Article  CAS  Google Scholar 

  • Li A, Dai H, Guo X, Zhang Z, Zhang K, Wang G, Wang X, Wang W, Chen H, Zheng LX, H, Li L, Zhang G (2021) Genome of the estuarine oyster provides insights into climate impact and adaptive plasticity. Commun Biol 4:1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Wang H, Guo X (2022) Regulation of the cell cycle, apoptosis, and proline accumulation plays an important role in the stress response of the eastern oyster Crassostrea Virginica. Front Mar Sci 9:921877

    Article  Google Scholar 

  • Lin CH, Yeh PL, Lee TH (2021) Time-course changes in the regulation of ions and amino acids in the hard clam Meretrix lusoria upon lower salinity challenge. J Exp Zool A Ecol Integr Physiol 335:602–613

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang WX (2016) Physiological and cellular responses of oysters (Crassostrea hongkongensis) in a multimetal-contaminated estuary. Environ Toxicol Chem 35:2577–2586

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Shi Y, Yao T, Bai C, Jiang J, Ye L (2021) Gender differences in hemocyte immune parameters of Hong Kong oyster Crassostrea hongkongensis during immune stress. Front Immunol 12:659469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • McNamara JC, Faria SC (2012) Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. J Comp Physiol b: Biochem Syst Environ Physiol 182:997–1014

    Article  CAS  Google Scholar 

  • Meng J, Zhu Q, Zhang L, Li C, Li L, She Z, Huang B, Zhang G (2013) Genome and transcriptome analyses provide insight into the euryhaline adaptation mechanism of Crassostrea gigas. PLoS ONE 8:e58563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu D, Jin K, Wang L, Sun F, Li J (2013) Identification of cathepsin B in the razor clam Sinonovacula constricta and its role in innate immune responses. Dev Comp Immunol 41:94–99

    Article  CAS  PubMed  Google Scholar 

  • Oliveira FAA, Buri MV, Rodriguez BL, Costa-da-Silva AL, Araújo HR, Capurro ML, Lu S, Tanaka AS (2020) The first characterization of a cystatin and a cathepsin L-like peptidase from Aedes aegypti and their possible role in DENV infection by the modulation of apoptosis. Int J Biol Macromol 146:141–149

    Article  CAS  PubMed  Google Scholar 

  • Padmini E, Tharani J (2014) Heat-shock protein 70 modulates apoptosis signal-regulating kinase 1 in stressed hepatocytes of Mugil cephalus. Fish Physiol Biochem 40:1573–1585

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Lezama RA, Ramos-Mandujano G, Tuz KL (2006) Mechanisms of Cell volume regulation in hypo-osmolality. Am J Med 119:S4–S11

    Article  CAS  PubMed  Google Scholar 

  • Perry RP (2007) Balanced production of ribosomal proteins. Gene 401:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce SK (1982) Invertebrate cell volume control mechanisms: a coordinated use of intracellular amino acids and inorganic ions as osmotic solute. Biol Bull 163:405–419

    Article  CAS  Google Scholar 

  • Pourmozaffar S, Tamadoni Jahromi S, Rameshi H, Sadeghi A, Bagheri T, Behzadi S, Gozari M, Zahedi MR, Abrari Lazarjani S (2020) The role of salinity in physiological responses of bivalves. Rev Aquac 12:1548–1566

    Article  Google Scholar 

  • Rahman MS, Rahman MS (2021) Effects of elevated temperature on prooxidant-antioxidant homeostasis and redox status in the American oyster: signaling pathways of cellular apoptosis during heat stress. Environ Res 196:110428

    Article  CAS  PubMed  Google Scholar 

  • Rashid K, Ahmad A, Liang L, Liu M, Cui Y, Liu T (2021) Solute carriers as potential oncodrivers or suppressors: their key functions in malignant tumor formation. Drug Discov Today 26:1689–1701

    Article  CAS  PubMed  Google Scholar 

  • Rybovich M, Peyre MKL, Hall SG, Peyre JFL (2016) Increased temperatures combined with lowered salinities differentially impact oyster size class growth and mortality. J Shellfish Res 35:101–113

    Article  Google Scholar 

  • Sadri S, Khoei AJ (2023) Ambient salinity affects silver nanoparticles (AgNPs) induced toxicity in the marine bivalve, the rock oyster. Saccostrea Cucullata Aquac Rep 30:101596

    Article  Google Scholar 

  • Scharping RJ, Plough LV, Meritt DW, North EW (2019) Low-salinity tolerance of early-stage oyster larvae from a mesohaline estuary. Mar Ecol Prog Ser 613:97–106

    Article  CAS  Google Scholar 

  • Song X, Lü W, Ibrahim S, Deng Y, Li Q, Yue C (2023) Identification of free amino acids (FAA) that are important as major intracellular osmolytes in the estuarine Hong Kong oyster. Crassostrea Hongkongensis Aquac Rep 28:101464

    Article  Google Scholar 

  • Strange K (2004) Cellular volume homeostasis. Adv Physiol Educ 28:155–159

    Article  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Toyohara H, Yoshida M, Hosoi M, Hayashi I (2005) Expression of taurine transporter in response to hypo-osmotic stress in the mantle of Mediterranean blue mussel. Fish Sci 71:356–360

    Article  CAS  Google Scholar 

  • Willmer P (2006) Osmoregulation in invertebrates. eLS. https://doi.org/10.1038/npg.els.0003646

  • Witkop EM, Proestou DA, Gomez-Chiarri M (2022) The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 23:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Chen X, Yu M, Ren J, Hu J, Shao C, Zhou L, Sun X, Yu T, Zheng Y, Wang Y, Wang Z, Zhang H, Fan G, Liu Z (2022) Chromosome-level genome and population genomic analysis provide insights into the evolution and environmental adaptation of Jinjiang oyster Crassostrea ariakensis. Mol Ecol Resour 22:1529–1544

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H (2014) Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun 5:3231

    Article  PubMed  Google Scholar 

  • Zhang X, Yuan J, Zhang X, Yu Y, Li F (2022) Comparative transcriptomic analysis unveils a network of energy reallocation in Litopenaeus vannamei responsive to heat-stress. Ecotoxicol Environ Saf 238:113600

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li A, She Z, Wang X, Jia Z, Wang W, Zhang G, Li L (2023) Adaptive divergence and underlying mechanisms in response to salinity gradients between two Crassostrea oysters revealed by phenotypic and transcriptomic analyses. Evol Appl 16:234–249

    Article  PubMed  Google Scholar 

  • Zhao X, Li Q, Meng Q, Yue C, Xu C (2017) Identification and expression of cysteine sulfinate decarboxylase, possible regulation of taurine biosynthesis in Crassostrea gigas in response to low salinity. Sci Rep 7:1–10

    Google Scholar 

  • Zhao X, Yu H, Kong L, Li Q (2012) Transcriptomic responses to salinity stress in the Pacific oyster Crassostrea gigas. PLoS ONE 7:e46244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by grants from Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province (2021ZLGX03, 2022LZGCQY010 and 2021LZGC027) and China Agriculture Research System Project (CARS-49).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, write original draft: Jianwen Gong. Review and editing: Qi Li.

Corresponding author

Correspondence to Qi Li.

Ethics declarations

Ethics Approval and Consent to Participate

C. nippona is neither an endangered nor protected species. All experiments in this study were conducted according to the national and institutional guidelines.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Li, Q. Comparative Transcriptome and WGCNA Analysis Reveal Molecular Responses to Salinity Change in Larvae of the Iwagaki Oyster Crassostrea Nippona. Mar Biotechnol 25, 1031–1042 (2023). https://doi.org/10.1007/s10126-023-10257-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10257-w

Keywords

Navigation