Skip to main content

Advertisement

Log in

Evaluation of Microplastics and Microcystin-LR Effect for Asian Clams (Corbicula fluminea) by a Metabolomics Approach

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Microplastics (MP) and microcystins (MCs) are two co-occurring pollutants in freshwater ecosystems that pose significant risks to aquatic organisms and human health. This study investigates the interactions between MP and MCs and their effects on the metabolic responses of freshwater aquaculture. Asian clams have been used as an indicator of microplastic pollution in freshwater ecosystems. The present study investigates metabolic responses of Asian clams during microplastic and microcystin-LR stress to identify health impacts and elucidate mechanistic effects of external stressors on Asian clams. A liquid chromatography/mass spectrometry (LC–MS)-based metabolomics approach was used to identify metabolic perturbations and histological section technique was used to assess changes of tissues from different Asian clam treatment groups. The results showed significantly pathological changes in the gills and hepatopancreas in experimental clam compared to control (healthy) clam. Metabolomics revealed alterations of many metabolites in the hepatopancreas of six Asian clam comparison groups, reflecting perturbations in several molecular pathways, including energy metabolism, amino acid metabolism, protein degradation/tissue damage, and oxidative stress. Overall, this study emphasizes the importance of understanding the interactions between MP and MCs and the need for proactive measures to safeguard freshwater ecosystems and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Al-Shehri SS, Duley JA, Bansal N (2020) Xanthine oxidase-lactoperoxidase system and innate immunity: biochemical actions and physiological roles. Redox Biol 34:101524. https://doi.org/10.1016/j.redox.2020.101524

  • An D, Na J, Song J, Jung J (2021) Size-dependent chronic toxicity of fragmented polyethylene microplastics to Daphnia magna. Chemosphere 271:129591. https://doi.org/10.1016/j.chemosphere.2021.129591

  • Aon MA, Bernier M, Mitchell SJ et al (2020) Untangling determinants of enhanced health and lifespan through a multi-omics approach in mice. Cell Metab 32:100-116.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Association of Plastic Manufacturers (Organization) (2020) Plastics – the facts 2020. In: PlasticEurope

  • Barboza LGA, Dick Vethaak A, Lavorante BRBO et al (2018) Marine microplastic debris: an emerging issue for food security, food safety and human health. Mar Pollut Bull 133:336–348

    Article  CAS  PubMed  Google Scholar 

  • Blaise BJ, Schwendimann L, Chhor V et al (2017) Persistently altered metabolic phenotype following perinatal excitotoxic brain injury. Dev Neurosci 39:182–191

    Article  CAS  PubMed  Google Scholar 

  • Borrelle SB, Ringma J, Lavender Law K et al (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science (80) 369:1515–1518. https://doi.org/10.1126/SCIENCE.ABA3656

  • Botha CJ, Laver PN, Singo A et al (2019) Evaluation of a Norwegian-developed ELISA to determine microcystin concentrations in fresh water. Water Sci Technol Water Supply 19:743–752

    Article  CAS  Google Scholar 

  • Chen L, Zhang H, Shi H et al (2023) Application of multi-omics combined with bioinformatics techniques to assess salinity stress response and tolerance mechanisms of Pacific oyster (Crassostrea gigas) during depuration. Fish Shellfish Immunol 137:108779. https://doi.org/10.1016/j.fsi.2023.108779

  • Clarke C, Howard R, Rossor M, Shorvon S (2016) Neurology: a queen square textbook: second edition. Neurol A Queen Sq Textb Second Ed 1–1074. https://doi.org/10.1002/9781118486160

  • Corda D, Kudo T, Zizza P et al (2009) The developmentally regulated osteoblast phosphodiesterase GDE3 is glycerophosphoinositol-specific and modulates cell growth*. J Biol Chem 284:24848–24856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa Araújo AP, Gomes AR, Malafaia G (2020) Hepatotoxicity of pristine polyethylene microplastics in neotropical Physalaemus cuvieri tadpoles (Fitzinger, 1826). J Hazard Mater 386:121992. https://doi.org/10.1016/j.jhazmat.2019.121992

  • da Costa Araújo AP, Malafaia G (2021) Microplastic ingestion induces behavioral disorders in mice: a preliminary study on the trophic transfer effects via tadpoles and fish. J Hazard Mater 401:123263. https://doi.org/10.1016/j.jhazmat.2020.123263

  • da Costa Araújo AP, Rocha TL, e Silva DD, Malafaia G (2021) Micro(nano)plastics as an emerging risk factor to the health of amphibian: a scientometric and systematic review. Chemosphere 283:131090. https://doi.org/10.1016/j.chemosphere.2021.131090

  • Dris R, Imhof H, Sanchez W et al (2015) Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles. Environ Chem 12:539–550

    Article  CAS  Google Scholar 

  • Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Murray JP, McMaster CR (2005) Glycerophosphocholine catabolism as a new route for choline formation for phosphatidylcholine synthesis by the Kennedy pathway*. J Biol Chem 280:38290–38296

    Article  PubMed  Google Scholar 

  • Flydal MI, Martinez A (2013) Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life 65:341–349

    Article  CAS  PubMed  Google Scholar 

  • Fokina NN, Ruokolainen TR, Nemova NN, Bakhmet IN (2013) Changes of blue mussels Mytilus edulis L. lipid composition under cadmium and copper toxic effect. Biol Trace Elem Res 154:217–225

    Article  CAS  PubMed  Google Scholar 

  • Fritsche K (2006) Fatty acids as modulators of the immune response. Annu Rev Nutr 26:45–73

    Article  CAS  PubMed  Google Scholar 

  • Garrido Gamarro E, Ryder J, Elvevoll EO, Olsen RL (2020) Microplastics in fish and shellfish–a threat to seafood safety? J Aquat Food Prod Technol 29:417–425

    Article  CAS  Google Scholar 

  • Gavrilović BR, Prokić MD, Petrović TG et al (2020) Biochemical parameters in skin and muscle of Pelophylax kl. esculentus frogs: influence of a cyanobacterial bloom in situ. Aquat Toxicol 220:105399. https://doi.org/10.1016/j.aquatox.2019.105399

  • Gonçalves AMM, Barroso DV, Serafim TL et al (2017) The biochemical response of two commercial bivalve species to exposure to strong salinity changes illustrated by selected biomarkers. Ecol Indic 77:59–66

    Article  Google Scholar 

  • Guo X, Feng C (2018) Biological toxicity response of Asian clam (Corbicula fluminea) to pollutants in surface water and sediment. Sci Total Environ 631–632:56–70

    Article  PubMed  Google Scholar 

  • Hamilton DP, Wood SA, Dietrich DR, Puddick J (2013) Costs of harmful blooms of freshwater cyanobacteria. Cyanobacteria An Econ Perspect 245–256. https://doi.org/10.1002/9781118402238.ch15

  • Horton AA, Walton A, Spurgeon DJ et al (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Tao J, Cheng M et al (2021) Microplastics and nanoplastics in the environment: macroscopic transport and effects on creatures. J Hazard Mater 407. https://doi.org/10.1016/j.jhazmat.2020.124399

  • Huang JN, Wen B, Zhu JG et al (2020) Exposure to microplastics impairs digestive performance, stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy (Poecilia reticulata). Sci Total Environ 733:138929. https://doi.org/10.1016/j.scitotenv.2020.138929

  • Huisman J, Codd GA, Paerl HW et al (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Gu X, Song R et al (2011) Time-dependent oxidative stress and histopathological changes in Cyprinus carpio L. exposed to microcystin-LR. Ecotoxicology 20:1000–1009

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Tian X, Fang Z et al (2019) Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics. Sci Total Environ 653:465–474

    Article  CAS  PubMed  Google Scholar 

  • Li C, Gan Y, Zhang C et al (2021a) Microplastic communities in different environments: differences, links, and role of diversity index in source analysis. Water Res 188. https://doi.org/10.1016/j.watres.2020.116574

  • Li J, Li R, Li J (2017a) Current research scenario for microcystins biodegradation – a review on fundamental knowledge, application prospects and challenges. Sci Total Environ 595:615–632

    Article  CAS  PubMed  Google Scholar 

  • Li J, Persson KM, Pekar H, Jansson D (2021b) Evaluation of indicators for cyanobacterial risk in 108 temperate lakes using 23 years of environmental monitoring data. Environ Sci Eur 33:1–13

    Article  CAS  Google Scholar 

  • Li L, Su L, Cai H et al (2019) The uptake of microfibers by freshwater Asian clams (Corbicula fluminea) varies based upon physicochemical properties. Chemosphere 221:107–114

    Article  CAS  PubMed  Google Scholar 

  • Li T, Li E, Suo Y et al (2017b) Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity. Aquat Toxicol 183:28–37

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Ma A, Yuan C et al (2021) Transcriptome analysis of liver lipid metabolism disorders of the turbot Scophthalmus maximus in response to low salinity stress. Aquaculture 534:736273. https://doi.org/10.1016/j.aquaculture.2020.736273

  • Liu Z, Yu P, Cai M et al (2019) Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex. Chemosphere 215:74–81

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang Y, Deng Y et al (2016) Response to comment on “uptake and accumulation of polystyrene microplastics in Zebrafish (Danio rerio) and toxic effects in liver.” Environ Sci Technol 50:12523–12524

    Article  CAS  PubMed  Google Scholar 

  • Martins ND, Yunes JS, Mckenzie DJ et al (2019) Microcystin – LR exposure causes cardiorespiratory impairments and tissue oxidative damage in trahira, Hoplias malabaricus. Ecotoxicol Environ Saf 173:436–443

    Article  CAS  PubMed  Google Scholar 

  • Miller SG, Hafen PS, Brault JJ (2020) Increased adenine nucleotide degradation in skeletal muscle atrophy. Int J Mol Sci 21:88. https://doi.org/10.3390/ijms21010088

    Article  CAS  Google Scholar 

  • Mishra P, Gong Z, Kelly BC (2017) Assessing biological effects of fluoxetine in developing zebrafish embryos using gas chromatography-mass spectrometry based metabolomics. Chemosphere 188:157–167

    Article  CAS  PubMed  Google Scholar 

  • Nan B, Su L, Kellar C, et al (2020) Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia. Environ Pollut 259:113865. https://doi.org/10.1016/j.envpol.2019.113865

  • Nguyen TV, Alfaro AC, Fabrice M et al (2018) Metabolic and immunological responses of male and female New Zealand Greenshell mussels (Perna canaliculus) infected with Vibrio sp. J Invertebr Pathol 157:80–89

    Article  CAS  PubMed  Google Scholar 

  • Oliveira P, Barboza LGA, Branco V et al (2018) Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Müller, 1774): Filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicol Environ Saf 164:155–163

    Article  CAS  PubMed  Google Scholar 

  • Pannetier P, Morin B, Le Bihanic F et al (2020) Environmental samples of microplastics induce significant toxic effects in fish larvae. Environ Int 134:105047

    Article  CAS  PubMed  Google Scholar 

  • Qin B, Zhu G, Gao G et al (2010) A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ Manage 45:105–112

    Article  PubMed  Google Scholar 

  • Rodrigues FP, da Costa e Silva Carvalho S, Martinez CB dos R, et al (2019) Are the damaging effects of oil refinery effluents on Corbicula fluminea (mollusca) reversible after its transfer to clean water? Ecol Indic 101:1045–1054

    Article  CAS  Google Scholar 

  • Saum SH, Pfeiffer F, Palm P et al (2013) Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus. Environ Microbiol 15:1619–1633

    Article  CAS  PubMed  Google Scholar 

  • Signa G, Di Leonardo R, Vaccaro A et al (2015) Lipid and fatty acid biomarkers as proxies for environmental contamination in caged mussels Mytilus galloprovincialis. Ecol Indic 57:384–394

    Article  CAS  Google Scholar 

  • Silva MSS, Oliveira M, Valente P et al (2020) Behavior and biochemical responses of the polychaeta Hediste diversicolor to polystyrene nanoplastics. Sci Total Environ 707. https://doi.org/10.1016/j.scitotenv.2019.134434

  • Sokolowska-Mikolajczyk M, Gajdzinski D, Gosiewski G, Socha M (2015) Serotonin, GnRH-A, and dopamine interaction in the control of in vivo luteinizing hormone release in Prussian carp (Carassius gibelio Bloch) at the time of gonad recrudescence. Czech J Anim Sci 60:45–51. https://doi.org/10.17221/7973-CJAS

  • Sousa R, Rufino M, Gaspar M et al (2008) Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho Estuary, Portugal. Aquat Conserv Mar Freshw Ecosyst 18:98–110

    Article  Google Scholar 

  • Su L, Cai H, Kolandhasamy P et al (2018) Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ Pollut 234:347–355

    Article  CAS  PubMed  Google Scholar 

  • Teh SJ, Werner I, Hinton DE (2000) Sublethal effects of chromium-VI in the Asian clam (Potamocorbula amurensis). Mar Environ Res 50:295–300

    Article  CAS  PubMed  Google Scholar 

  • Van Nguyen T, Alfaro AC (2019) Targeted metabolomics to investigate antimicrobial activity of itaconic acid in marine molluscs. Metabolomics 15:1–12

    Google Scholar 

  • Wan X, Cheng C, Gu Y, et al (2021) Acute and chronic toxicity of microcystin-LR and phenanthrene alone or in combination to the cladoceran (Daphnia magna). Ecotoxicol Environ Saf 220:112405. https://doi.org/10.1016/j.ecoenv.2021.112405

  • Wang Q, Hong X, Chen H et al (2018) The neuropeptides of Asian freshwater clam (Corbicula fluminea) as new molecular biomarker basing on the responses of organophosphate chemicals exposure. Ecotoxicol Environ Saf 160:52–59

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Kong F, Fu L et al (2021) Responses of Asian clams (Corbicula fluminea) to low concentration cadmium stress: whether the depuration phase restores physiological characteristics. Environ Pollut 284:117182. https://doi.org/10.1016/j.envpol.2021.117182

  • Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51:6634–6647

    Article  CAS  PubMed  Google Scholar 

  • Xie H-K, Li A, Zhao M-T et al (2020) Effects of antioxidants of bamboo leaves (AOB) on the oxidative susceptibility of glycerophosphocholine and glycerophosphoethanolamine in dried scallop (Argopecten irradians) adductor muscle during storage. LWT 134:110214. https://doi.org/10.1016/j.lwt.2020.110214

  • Xu J, Ji P, Zhao Z (2012) Genome-wide SNP discovery from transcriptome of four common carp strains. PLoS ONE 7:e48140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yavaşoğlu A, Özkan D, Güner A et al (2016) Histopathological and apoptotic changes on marine mussels Mytilus galloprovincialis (Lamark, 1819) following exposure to environmental pollutants. Mar Pollut Bull 109:184–191

    Article  PubMed  Google Scholar 

  • Zhang S, Ding J, Razanajatovo RM et al (2019a) Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus). Sci Total Environ 648:1431–1439

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zeng X, Ren M et al (2017) Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol 8:10. https://doi.org/10.1186/s40104-016-0139-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Yan Z, Zheng X et al (2020) Effects of acute ammonia toxicity on oxidative stress, DNA damage and apoptosis in digestive gland and gill of Asian clam (Corbicula fluminea). Fish Shellfish Immunol 99:514–525

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhuang H, Yang H et al (2019b) Microcystin-LR disturbs testicular development of giant freshwater prawn Macrobrachium rosenbergii. Chemosphere 222:584–592

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Qin Z, Huang Z et al (2021) Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish. Environ Pollut 282:117039. https://doi.org/10.1016/j.envpol.2021.117039

  • Zhou X, Zhou D-Y, Lu T et al (2018) Characterization of lipids in three species of sea urchin. Food Chem 241:97–103

    Article  CAS  PubMed  Google Scholar 

  • Zhukova NV (2019) Fatty acids of marine mollusks: impact of diet, bacterial symbiosis and biosynthetic potential. Biomolecules 9:857. https://doi.org/10.3390/biom9120857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Freshwater Genetic Resource Center (FGRC:18537).

Author information

Authors and Affiliations

Authors

Contributions

Jiahua Zhang: conceptualization, methodology, writing—original draft. Jie Wang: data curation, formal analysis. Xiaodong Wang: formal analysis. Shikun Liu: visualization. Liang Zhou: visualization. Xingguo Liu: writing—reviewing and editing, validation.

Corresponding author

Correspondence to Xingguo Liu.

Ethics declarations

Ethics Approval

This study was according to the animal experimentation regulations in the Fishery Machinery and Instrument Research Institute. No specific permission was required for the collection of clams.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, J., Wang, X. et al. Evaluation of Microplastics and Microcystin-LR Effect for Asian Clams (Corbicula fluminea) by a Metabolomics Approach. Mar Biotechnol 25, 763–777 (2023). https://doi.org/10.1007/s10126-023-10238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10238-z

Keywords

Navigation