Skip to main content

Advertisement

Log in

Molecular Features Associated with Resilience to Ocean Acidification in the Northern Quahog, Mercenaria mercenaria

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The increasing concentration of CO2 in the atmosphere and resulting flux into the oceans will further exacerbate acidification already threatening coastal marine ecosystems. The subsequent alterations in carbonate chemistry can have deleterious impacts on many economically and ecologically important species including the northern quahog (Mercenaria mercenaria). The accelerated pace of these changes requires an understanding of how or if species and populations will be able to acclimate or adapt to such swift environmental alterations. Thus far, studies have primarily focused on the physiological effects of ocean acidification (OA) on M. mercenaria, including reductions in growth and survival. However, the molecular mechanisms of resilience to OA in this species remains unclear. Clam gametes were fertilized under normal pCO2 and reared under acidified (pH ~ 7.5, pCO2 ~ 1200 ppm) or control (pH ~ 7.9, pCO2 ~ 600 ppm) conditions before sampled at 2 days (larvae), 32 days (postsets), 5 and 10 months (juveniles) and submitted to RNA and DNA sequencing to evaluate alterations in gene expression and genetic variations. Results showed significant shift in gene expression profiles among clams reared in acidified conditions as compared to their respective controls. At 10 months of exposure, significant shifts in allele frequency of single nucleotide polymorphisms (SNPs) were identified. Both approaches highlighted genes coding for proteins related to shell formation, bicarbonate transport, cytoskeleton, immunity/stress, and metabolism, illustrating the role these pathways play in resilience to OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The original contributions presented in the study are publicly available. Data can be found at: https://www.ncbi.nlm.nih.gov/sra under BioProject PRJNA887696 accession numbers SAMN31181489- SAMN31181584 (RADSeq) and BioProject PRJNA887747 accession numbers SAMN31183563- SAMN31183594 (RNASeq).

References

  • Agbaje OBA, Dominguez G, Jabo DE (2021) Organic biopolymers of venus clams: Collagen related matrix in the bivalve shells with crossed lamellar ultrastructure. Biochem Biophys Rep. https://doi.org/10.1016/j.bbrep.2021.100939

  • Allen LH, Aderem A (1995) A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med 182:182–829

    Article  Google Scholar 

  • Arivalagan J, Yarra T, Marie B, Sleight VA, Duvernois-Berthet E, Clark MS, Marie A, Berland S (2017) Insights from the Shell Proteome: Biomineralization to Adaptation. Mol Biol Evol 34:66–77

    Article  CAS  PubMed  Google Scholar 

  • Baumann H, Wallace RB, Tagliaferri T, Gobler CJ (2015) Large Natural pH, CO2, and O2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuaries Coasts 38:220–231

    Article  CAS  Google Scholar 

  • Bibby R, Widdicombe S, Parry H, Spicer J, Pipe R (2008) Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat Biol 2:67–74

    Article  Google Scholar 

  • Bitter MC, Kapsenber L, Gattuso JP, Pfister CA (2019) Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun 10:5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutet I, Monteiro HJA, Baudry L, Takeuchi T, Bonnivard E, Billoud B, Tanugy A (2022) Chromosomal assembly of the flat oyster (Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evol Appl. https://doi.org/10.1111/eva.13462

  • Burge CA, Eakin CM, Friedman CS, Froelich B, Hershverger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell CD (2014) Climate Change influences on Marine Infectious Diseases: Implications for Management and Society. Ann Rev Mar Sci 6:249–277

    Article  PubMed  Google Scholar 

  • Cai WJ, Hu X, Huang WJ, Murrell MC, Lehrter JC, Lohrenz SE, Chou WC, Zhai W, Hollibaugh JT, Wang Y, Zhao P, Guo X, Gunderson K, Dai M, Gong GC (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4:766–770

    Article  CAS  Google Scholar 

  • Cao R, Wang Q, Yang D, Liu Y, Ran W, Qu Y, Zhao J (2018) CO2-induced ocean acidification impairs the immune function of the Pacific oyster against Vibrio splendidus challenge: An integrated study from a cellular and proteomic perspective. Sci Total Environ 625:1574–1583. 

  • Cerrato RM, Caron DA, Lonsdale DJ, Rose JM, Schaffner RA (2004) Effect of the northern quahog Mercenaria mercenaria on the development of blooms of the brown tide algae Aureococcus anophagefferens. MEPS 281:93–108

    Article  Google Scholar 

  • Dame RF (2011) Ecology of marine bivalves: an ecosystem approach. CRC Press, Boca Raton

    Google Scholar 

  • De Wit P, Durland E, Ventura A, Langdon CJ (2018) Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shellformation mechanisms. BMC Genom 19(1):1–15. https://doi.org/10.1186/s12864-018-4519-y

  • Dineshram R, Quan Q, Sharma R, Chandramouli K, Yalamanchili HK, Chu I, Thiyagarjan V (2015) Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification. Proteomics 15:4120–4134

    Article  CAS  PubMed  Google Scholar 

  • Evans TG, Chang F, Menge BA, Hofmann GE (2013) Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Mol Ecol 22:1609–1625

    Article  CAS  PubMed  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of Ocean Acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Farhat S, Tanguy A, Pales Espinosa E, Guo X, Boutet I, Smolowitz R, Murphy D, Rivara G, Allam B (2020) Identification of variants associated with hard clam, Mercenaria mercenaria, resistance to Quahog Parasite Unknown disease. Genomics 112:4887–4896

    Article  CAS  PubMed  Google Scholar 

  • Farhat S, Bonnivard E, Pales Espinosa E, Tanguy A, Boutet I, Guiglielmoni N, Flot JF, Allam B (2022) Comparative analysis of the Mercenaria mercenaria genome provides insights into the diversity of transposable elements and immune molecules in bivalve mollusks. BMC Genomics 23:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impacts of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science 305:362–366

    Article  CAS  PubMed  Google Scholar 

  • Feely RA, Sc D, Cooley SR (2009) Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22:36–47

    Article  Google Scholar 

  • Foulon V, Boudry P, Artiguad S, Guerard F, Hellio C (2019) In Silico Analysis of the Pacific Oyster (Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement. Int J Mol Sci 20:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Esquivel Z, Bricelj VM, Gonzalez-Gomez MA (2001) Physiological basis for energy demands and early postlarval mortality in the Pacific oyster, Crassostrea gigas. J Exp Mar Biol Ecol 263:77–103

    Article  Google Scholar 

  • Gattuso J-P, Epitalon J-M, Lavigne H Orr J (2018) seacarb: seawater carbonate chemistry. R package version 3.2.10. http://CRAN.R-project.org/package=seacarb

  • Gazeau FL, Parker LM, Comeau S, Gattuso JP, O’Connor WA, Martin S, Portner HO, Ross PM (2013) Impacts of ocean acidification on marine shelled molluscs. Mar Biol 160:2207–2245

  • Goncalves P, Jones DB, Thompson EL, Parker LM, Ross PM, Raftos DA (2017) Transcriptomic profiling of adaptive responses to ocean acidification. Mol Ecol 26:5974–5988

    Article  CAS  PubMed  Google Scholar 

  • Gray MW, Langdon CJ, Waldbusser GG, Hales B, Kramer S (2017) Mechanistic understanding of ocean acidification impacts on larval feeding physiology and energy budgets of the mussel Mytilus californianus. Mar Ecol Prog Ser. https://doi.org/10.3354/meps11977

    Article  Google Scholar 

  • Helm MM, Bourne N, Lovatelli A (2004) Hatchery culture of bivalves: A practical manual. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Hernroth B, Baden S, Thorndyke M, Dupont S (2011) Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidification. Aquat 103:222–224

  • Hettinger A, Sanford E, Hill TM, Russell AD, Sato KNS, Hoey J, Forsch M, Page HN, Gaylord B (2012) Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. ESA 93:2758–2768

    Article  Google Scholar 

  • Lanning G, Eilers S, Pörtner HO, Sokolova IM, Bock C (2010) Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response. Mar Drugs 8:2318–2339

    Article  CAS  Google Scholar 

  • Laurent A, Fennel K, Cai WJ, Huang WJ, Barbero L, Wanninkhof R (2017) Eutrophication-induced acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a coupled physical-biogeochemical model. Geophys Res Lett 44:946–956

    Article  CAS  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. 127:2987–03

  • Liu S, Shi W, Guo C, Zhao X, Han Y, Peng C, Chai X, Liu G (2016) Ocean acidification weakens the immune response of blood clam through hampering NF-kappa B and toll-like receptor pathways. Fish and Shellfish Immunol 54:322–327

    Article  CAS  Google Scholar 

  • Liu Z, Zhang Y, Zhou Z, Zong Y, Zheng Y, Liu C, Song L (2020) Metabolomic and transcriptomic profiling reveals the alteration of energy metabolism in oyster larvae during initial shell formation and under experimental ocean acidification. Sci Rep 10:1–11

    Article  CAS  Google Scholar 

  • Lopes-Lima M, Freitas S, Pereira L, Gouveia E, Hinzmann M, Checa A, Machado J (2012) Ionic regulation and shell mineralization in the bivalve Anodonta cygnea (swan mussel) following heavy-metal exposure. Canadian J Zool 90. https://doi.org/10.1139/z11-129

  • López-Landavery EA, Carpizo-Ituarte EJ, Pérez-Carrasco L, Díaz F, Lafarga-De la Cruz F, García-Esquivel Z, Galindo-Sánchez CE (2021) Acidification stress effect on umbonate veliger larval development in Panopea globosa. Mar Pollut Bull 163:111945

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo DR, Greenwood SJ, Araya MT, Berthe FCJ, Johnson GR, Siah A (2012) Differential gene expression of γ-actin, Toll-like receptor 2 (TLR-2) and interleukin-1 receptor-associated kinase 4 (IRAK-4) in Mya arenaria haemocytes induced by in vivo infections with two Vibrio splendidus strains. Dev Comp Immunol 34:710–714

    Article  CAS  Google Scholar 

  • Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. MEPS 293:109–118

    Article  Google Scholar 

  • Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009) Shellfish Face Uncertain Future in high CO2 World: Influence of Acidification on Oyster Larvae Calcification and Growth in Estuaries. PLoS ONE 4(5). https://doi.org/10.1371/journal.pone.0005661

  • Millero FJ (2010) Carbonate constants for estuarine waters. Mar Freshw Res 62:139–142

    Article  Google Scholar 

  • Moreira R, Balseiro P, Planas JV, Fuste B, Beltran S, Novoa B (2012) Transcriptomics of In Vitro Immune-Stimulated Hemocytes from the Manila Clam Ruditapes philippinarum Using High-Throughput Sequencing. PLoS ONE 7(4). https://doi.org/10.1371/journal.pone.0035009

  • Moya A, Huisman L, Ball EE, Hayward DC, Grasso LC, Chua CM, Miller DJ (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol 21:2440–2454

    Article  CAS  PubMed  Google Scholar 

  • Moya A, Huisman L, Foret S, Gattuso JP, Hayward DC, Ball EE, Miller DJ (2015) Rapid acclimation of juvenile corals to CO2-mediated acidification by upregulation of heat shock protein and Bcl-2 genes. Mol Ecol 24:438–452

    Article  CAS  PubMed  Google Scholar 

  • Mustafa S, Kharudin SN, Kian AYS (2015) Effect of Simulated Ocean Acidification on Chitin Content in the Shell of White Shrimp, Litopenaeus vannamei. J Fish Sci.com 9(2). https://doi.org/10.3389/fphys.2021.813582

  • Nagai K, Yano M, Morimoto K, Miyamoto H (2007) Tyrosinase localization in mollusc shells. Comp Biochem Physiol B Biochem Mol Biol 146:207–214

  • Navarro JM, Torres R, Acuña K, Duarte C, Manriquez PH, Aguilera LM, V, (2013) Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90:1242–1248

    Article  CAS  PubMed  Google Scholar 

  • NMFS National Marine Fisheries Services (2019) Fisheries of the United States 2019. Current Fishery Statistics No. 2019

  • O’Donnell MJ, Todgham AE, Swewell MA, Hammond LM, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE (2010) Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. MEPS 398:157–171

    Article  CAS  Google Scholar 

  • Pauletto M, Milan M, Moreira R, Novoa B, Figueras A, Babbucci M, Patarnello T, Bargelloni. Deep transcriptome sequencing of Pecten maximus hemocytes: A genomic resource for bivalve immunology. Fish and Shellfish Immunol 37:154–165

  • Pespeni MH, Sanford E, Gaylord B, Hosfelt HTM, JD, Jaris HK, LaVigne M, Lenz E, Russell AD, Young MK, Palumbi SR, (2013a) Evolutionary change during experimental ocean acidification. PNAS 110:6937–6942

    Article  PubMed  PubMed Central  Google Scholar 

  • Pespeni MH, Chang F, MEnge BA, PAlumbi SR, (2013b) Signs of adaptation to local pH conditions across an environmental mosaic in the California current ecosystem. Integr Comp Biol 53:857–870

    Article  CAS  PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double Digest RADseq: An inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramajo L, Marba N, Prado L, Peron S, Lardies M, Rodriguez-Navarroo AV, Christian A, LAgos NA, Duarte CM, (2015) Biomineralization changes with food supply confer juvenile scallops (Agropecten purpuratus) resistance to ocean acidification. Glob Change Biol 22:2025–2037

    Article  Google Scholar 

  • Ramesh K, Hu MY, Thomsen J, Bleich M, Melzner F (2017) Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification. Nat Commun 8:1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh K, Yarra T, Clark MS, John U, Melzner F (2019) Expression of calcification-related ion transporters during blue mussel larval development. Ecol Evol 9:77157–77172

    Article  Google Scholar 

  • Rochette NC, Rivera-Colón AG, Catchen JM (2019) Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol Ecol 28:4737–4754

    Article  CAS  PubMed  Google Scholar 

  • Rodolfo-Metalpa R, Lombardi C, Cocito S, Hall-Spencer JM, Gambi MC (2010) Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar Ecol 31:447–456

    Article  CAS  Google Scholar 

  • Romero MF, Chen AP, Parker MD, Boron WF (2013) The SLC4 family of bicarbonate (HCO3-) transporters. Mol Aspects Med 34:159–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropp AJ (2020) Population Structure of the Hard Clam, Mercenaria mercenaria, along the EAst Coast of North America. Dissertations, Theses, and Masters Projects. Paper 1616444311. https://doi.org/10.25773/v5-wa9q-8c19

  • Rice MA (1992) The Northern Quahog: The biology of Mercenaria mercenaria. Rhode Island Sea Grant ISBN:0–938412–33–7

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, WAnninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF, (2004) The Ocean Sink for Anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Schwaner C, Barbosa M, Connors P, Park TJ, de Silva D, Griffith A, Gobler CJ, Espinosa EP, Allam B (2020) Experimental acidification increases susceptibility of Mercenaria mercenaria to infection by Vibrio species. Mar Environ Res 154:104872

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Yu C, Gu Z, Zhan X, Wang Y, Wang A (2012) Characterization of the Pearl Oyster (Pinctada martensii) Mantle Transcriptome Unravels Biomineralization Genes. Mar Biotechnol 15:175–187

    Article  CAS  Google Scholar 

  • Sillanpaa KJ, Sundh H, Sundell KS (2018) Calcium transfer across the outer mantle epithelium in the Pacific oyster. Crassostrea Gigas Proc Royal Soc b 285:20181676

    Article  CAS  Google Scholar 

  • Stony Brook University (2016) Understanding SeaWulf. https://it.stonybrook.edu/help/kb/understanding-seawulf

  • Su W, Rong J, Zha S, Yan M, Fang J, Liu G (2018) Ocean acidification affects the cytoskeleton, lysozymes, and nitric oxide of hemocytes: a possible explanation for the hampered phagocytosis in blood clams. Tegillarca Granosa Front Physiol 9:619

    Article  PubMed  Google Scholar 

  • Sun T, Tang X, Jiang Y, Wang Y (2017) Seawater acidification induced immune function changes of haemocytes in Mytilus edulis: a comparative study of CO2 and HCl enrichment. Sci Rep 7:41488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talmage SC, Gobler CJ (2009) The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnol Oceangr 54:2072–2080

    Article  Google Scholar 

  • Talmage SC, Gobler CJ (2010) Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival or larval shellfish. PNAS 107:17246–17251

    Article  PubMed  PubMed Central  Google Scholar 

  • Talmage SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves. PLOS ONE 6(10). https://doi.org/10.1371/journal.pone.0026941

  • Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157:2667–2676

    Article  Google Scholar 

  • Thomsen J, Stapp LS, Haynert K, Schade H, Danelli M, Lanning G, Wegner KM, Melzner F (2017) Naturally acidified habitat selects for ocean acidification-tolerant mussels. Sci Adv. https://doi.org/10.1126/sciadv.1602411

  • Timmins-Schiffman, O’Donnell MJ, Friedman CS, Roberts SB (2012) Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar Bio 160:1973–1982

  • Timmins-Schiffman E, Coffey WD, Hua W, Nunn BL, Dickinson GH, Roberts SB (2014) Shotgun proteomics reveals physiological response to ocean acidification in Crassotrea gigas. BMC Genomics 15:951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmins-Schiffman E, Guzman JM, Elliott R, Vadopalas B, Roberts SB (2019) Dynamic response in the larval geoduck clam proteome to elevated pCO2. BioRxiv. https://doi.org/10.1101/613018

    Article  Google Scholar 

  • Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594

    Article  CAS  PubMed  Google Scholar 

  • Uthicke S, Deshpande NP, Liddy M, Patel F, Lamare M, Wilkins MR (2019) Little evidence of adaptation potential to ocean acidification in sea urchins living in “Future Ocean” conditions at a CO2 vent. Ecol Evol 9:10004–10016

    Article  PubMed  PubMed Central  Google Scholar 

  • Videla JA, Chaparro OR, Thompson RJ, Concha II (1998) Role of biochemical energy reserves in the metamorphosis and early juvenile development of the oyster Ostrea chilensis. Mar Biol 132:635–640

    Article  Google Scholar 

  • Waldbusser GG, Brunner EL, Haley BA, Hales B, Langdon CJ, Prahl FG (2013) A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophy Res Lett 40:2171–2176

    Article  CAS  Google Scholar 

  • Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Hutchinson G (2015) Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10:e0128376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall CC, Peterson BJ, Gobler CJ (2008) Facilitation of seagrass Zostera marina productivity by suspension-feeding bivalves. MEPS 357:165–174

    Article  CAS  Google Scholar 

  • Wallace RK, Waters P, Rikard RS (2008) Oyster hatchery techniques. Southern Regional Aquaculture Center

  • Wallace RB, Baumann H, Grear JS, Aller RC, Gobler CJ (2014) Coastal Ocean Acidification: The other eutrophication problem. Estuar Coast Shelf Sci 148:1–13

    Article  CAS  Google Scholar 

  • Wang Q, Cao R, Ning X, You L, Mu C, Wang C, Wei L, Cong M, Wu H, Zhao J (2016) Effects of ocean acidification on immune response of the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 49:24–33

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Liu B, Fan S, Li H, Chen M, Zhang B, Yu D (2017) Differentially expressed immune-related genes in hemocytes of the pearl oyster Pinctada fucata against allograft identified by transcriptome analysis. Fish & Shellfish Immunol 62:247–256

    Article  CAS  Google Scholar 

  • Weiss IM, Schonitzer V (2006) The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J Struct Biol 153:264–277

    Article  CAS  PubMed  Google Scholar 

  • Wessel N, Martin S, Badou A, Dubois P, Huchette S, Julia V, Nunes F, Harney E, Paillard C, Auzoux-Bordenave S (2018) Effect of CO2-induced ocean acidification on the early development and shell mineralization of the European abalone (Haliotis tuberculata). J Exp Mar Biol Ecol 508:52–63

    Article  CAS  Google Scholar 

  • White MM, McCorkle DC, Mullineaux LS, Cohen AL (2013) Early Exposure of Bay Scallops (Argopectin irradians) to High CO2 Causes a Decrease in Larval Shell Growth. PLos ONE 8(4). https://doi.org/10.1371/journal.pone.0061065

  • Xu X, Chen J, Xu H, Li D (2014) Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress. Fungal Genet Biol 69:75–83

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Yang F, Zhao L, Yan X (2016) Seawater acidification affects the physiological energetics and spawning capacity of the Manila clam Ruditapes philippinarum during gonadal maturation. Comp. Biochem Physiol Part A Mol Integr Physiol 196:20–29

    Article  CAS  Google Scholar 

  • Yan Z, Fang Z, Ma Z, Deng J, Li S, Xie L, Zhang R (2007) Biomineralization: functions of calmodulin-like protein in the shell formation of pearl oyster. Biochim Biophys Acta 1170:1338–1344

    Article  CAS  Google Scholar 

  • Zarnoch CB, Schreibman MP (2008) Influence of temperature and food availability on the biochemical composition and mortality of juvenile Mercenaria mercenaria (L.) during the over-winter period. Aquacul 274:281–291

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu Z, Song X, Huang S, Wang L, Song L (2019) The Inhibition of Ocean Acidification on the Formation of Oyster Calcified Shell by Regulating the Expression of Cg chs1 and Cg chit4. Front Physiol 10:1034

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Shi W, Han Y, Liu S, Guo C, Fu W, Liu G (2017) Ocean acidification adversely influences metabolism, extracellular pH and calcification of an economically important marine bivalve, Tegillarca granosa. Mar Environ Res 125:82–89

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Han Y, Chen B, Xia B, Qu K, Liu G (2020) CO2-driven ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses. Chemosphere 243:125415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Christopher Gobler and Andrew Griffith for their assistance in analyzing DIC samples. We would also like to thank Christopher Paparo at the Southampton Marine Station for assistance with experimental set-up and maintenance.

Funding

This work was supported by funding through the National Oceanic and Atmospheric Administration (NOAA, USA; 67208) Northeast Sea Grant College Consortium in partnership with NOAA Ocean Acidification Program and the New York Sea Grant (NYSG) program to Bassem Allam and Emmanuelle Pales Espinosa (Project R/XG-24). Partial support was also provided by NYSG via Grant # R/XG-32 (East Coast Hard Clam Selective Breeding Collaborative). Additional support was provided by the Mid-Atlantic Sea Grant NOAA Ocean Acidification Program's Ocean Coastal and Estuarine Acidification Graduate Research Fellowship awarded to Caroline Schwaner.

Author information

Authors and Affiliations

Authors

Contributions

CS contributed to formal analysis, investigation, methodology, and writing the original draft. SF contributed to formal analysis and manuscript revision. AT and IB assisted with investigation and methodology. MB helped in investigation. EPE helped in methodology, manuscript revision, and funding. BA was integral to funding, investigation, conceptualization, project administration, and reviewing and editing.

Corresponding author

Correspondence to Bassem Allam.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwaner, C., Farhat, S., Barbosa, M. et al. Molecular Features Associated with Resilience to Ocean Acidification in the Northern Quahog, Mercenaria mercenaria. Mar Biotechnol 25, 83–99 (2023). https://doi.org/10.1007/s10126-022-10183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10183-3

Keywords

Navigation