Skip to main content

Genome-Wide Association and Expression Analysis Revealed the Candidate Variants and Molecular Underpinnings of Cold-Stress Response in Large Yellow Croaker


Large yellow croaker (Larimichthys crocea) is one of the most economically important fish in China. Recently, global climate change has caused more and more intense and extreme low temperature weathers, resulting in huge losses to the large yellow croaker industry. Therefore, it is essential to understand the mechanisms of low-temperature tolerance in large yellow croaker. Here, we conducted an integrative analysis of genome-wide association study (GWAS) and transcriptome analysis to identify candidate variants and reveal the molecular underpinning of cold-stress response in large yellow croaker. A total of 8 significant single nucleotide polymorphisms (SNPs) loci on 6 chromosomes were identified in the GWAS analysis, and 5764 (gill) and 3588 (liver) differentially expressed genes (DEGs) were detected in cold-stressed large yellow croaker, respectively. Further comparative and functional analysis of the candidate genes and DEGs highlighted the importance of pathways/genes related to immune response, cellular stress response, lipid transport, and metabolism in the cold-stress response of large yellow croaker. Our results provide insights into the cold tolerance of large yellow croaker and contribute to genomic-based selection for low-temperature-resistant large yellow croaker.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  • Abram QH, Dixon B, Katzenback BA (2017) Impacts of low temperature on the teleost immune system. Biology 6:39

    Article  Google Scholar 

  • Bai H, Zhou T, Zhao J, Chen B, Pu F, Bai Y, Wu Y, Chen L, Shi Y, Ke Q, Yu X, Xu P (2020) Transcriptome analysis reveals the temporal gene expression patterns in skin of large yellow croaker (Larimichthys crocea) in response to Cryptocaryon irritans infection. Fish Shellfish Immunol 99:462–472

    CAS  Article  Google Scholar 

  • Bai Y, Wang J, Zhao J, Ke Q, Qu A, Deng Y, Zeng J, Gong J, Chen J, Pan Y, Chi H, Gong H, Zhou T, Xu P (2022) Genomic selection for visceral white-nodules diseases resistance in large yellow croaker. Aquaculture 559.

  • Bouma HR, Carey HV, Kroese FG (2010) Hibernation: the immune system at rest? J Leukoc Biol 88:619–624

    CAS  Article  Google Scholar 

  • Burel C, Ruyet JP, Gaumet F, Roux AL, Sévère A, Boeuf G (2010) Effects of temperature on growth and metabolism in juvenile turbot. J Fish Biol 49(4).

  • Cheng CH, Ye CX, Guo ZX, Wang AL (2017) Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress. Fish Shellfish Immunol 64:137–145

    CAS  Article  Google Scholar 

  • Chen WH, Sun LT, Tsai CL, Song YL, Chang CF (2002) Cold-stress induced the modulation of catecholamines, cortisol, immunoglobulin M, and leukocyte phagocytosis in tilapia. Gen Comp Endocrinol 126:90–100

    CAS  Article  Google Scholar 

  • Da Costa JC, Val AL (2020) Extreme climate scenario and parasitism affect the Amazonian fish Colossoma macropomum. Sci Total Environ 726:138628

    Article  Google Scholar 

  • Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML (2013) Special features of RAD sequencing data: implications for genotyping. Mol Ecol 22:3151–3164

    CAS  Article  Google Scholar 

  • Don ASA, Dallapiazza RF, Bennin DA, Brake T, Cowan CE, Horne MC (2006) Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest. Exp Cell Res 312:4181–4204

    CAS  Article  Google Scholar 

  • Farkas T, Fodor E, Kitajka K, Halver JE (2001) Response of fish membranes to environmental temperature. Aquaculture Res 32

  • Faught E, Vijayan MM (2016) Mechanisms of cortisol action in fish hepatocytes. Comparative biochemistry and physiology. Part B Biochem Mol Biol 199:136–145

    CAS  Article  Google Scholar 

  • Gao GQ, Chang YM, Han QX, Chi BJ, Li MY, Xue LY, Liang LQ (2010) Yi chuan = Hereditas 32:248–253

  • Gillette DP, Edds DR, Jha BR, Mishra B (2022) Thirty years of environmental change reduces local, but not regional, diversity of riverine fish assemblages in a Himalayan biodiversity hotspot. Biol Conserv 265.

  • Gui JF, Tang Q, Li Z, Liu J, De Silva SS (Eds.) (2018) Aquaculture in China: Success stories and modern trends. John Wiley & Sons Oxford, pp. 297–308

  • Hsieh SL, Kuo CM (2005) Stearoyl-CoA desaturase expression and fatty acid composition in milkfish (Chanos chanos) and grass carp (Ctenopharyngodon idella) during cold acclimation. Comp Biochem Physiol B Biochem Mol Biol 141:95–101

  • Huber DG, Gulledge J (2011) Extreme weather and climate change: Understanding the link, managing the risk. Center for Climate & Energy Solutions

  • Kassahn KS, Crozier RH, Pörtner HO, Caley MJ (2009) Animal performance and stress: Responses and tolerance limits at different levels of biological organisation. Biol Rev Camb Philos Soc 84:277–292

    Article  Google Scholar 

  • Katherine C, Amy A, Catharien H, David Y, John I (2014) Characterisation of a novel transmembrane protein in primary human cd4+ t-cells. Front Immunol 4:704–713

    Google Scholar 

  • Ke Q, Wang J, Bai Y, Zhao J, Gong J, Deng Y, Qu A, Suo N, Chen J, Zhou T (2022) GWAS and genomic prediction revealed potential for genetic improvement of large yellow croaker adapting to high plant protein diet. Aquaculture 553.

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  Article  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257.

    CAS  Article  PubMed  Google Scholar 

  • Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS (2005) Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol 3:e351

    Article  Google Scholar 

  • Le Morvan C, Troutaud D, Deschaux P (1998) Differential effects of temperature on specific and nonspecific immune defences in fish. J Exp Biol 201:165–168

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (oxford, England) 25:1754–1760

    CAS  Article  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics (Oxford, England) 25:2078–2079

  • Li W, Bai X, Li J, Zhao Y, Liu J, Zhao H, Liu L, Ding M, Wang Q, Shi FY, Hou M, Ji J, Gao G, Guo R, Sun Y, Liu Y, Xu D (2019) The nucleoskeleton protein IFFO1 immobilizes broken DNA and suppresses chromosome translocation during tumorigenesis. Nat Cell Biol 21:1273–1285

    CAS  Article  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: Genome association and prediction integrated tool. Bioinformatics (oxford, England) 28:2397–2399

    CAS  Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25:402–408

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  • Luo Y (2020) 2020 China fishery statistics yearbook published Guangdong’s total aquatic product output ranked first in China for the first time. Ocean Fishery 6:12–13

    Google Scholar 

  • Lu Y, Nie M, Wang L, Xiong Y, Wang F, Wang L, Xiao P, Wu Z, Liu Y, You F (2017) Energy response and modulation of ampk pathway of the olive flounder Paralichthys olivaceus in low-temperature challenged. Aquaculture S0044848617314060

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic Regulation. Rev Fish Biol Fisheries 9:211–268

    Article  Google Scholar 

  • Neerincx A, Boyle LH (2017) Properties of the tapasin homologue TAPBPR. Curr Opin Immunol 46:97–102

    CAS  Article  Google Scholar 

  • Nikoskelainen S, Bylund G, Lilius EM (2004) Effect of environmental temperature on rainbow trout (Oncorhynchus mykiss) innate immunity. Dev Comp Immunol 28:581–592

    CAS  Article  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    CAS  Article  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    CAS  Article  Google Scholar 

  • Qian B, Xue L (2016) Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress. Mar Genomics 25:95–102

    Article  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    CAS  Article  Google Scholar 

  • Sánchez-Vázquez FJ, López-Olmeda JF, Vera LM, Migaud H, López-Patiño MA, Míguez JM (2019) Environmental cycles, melatonin, and circadian control of stress response in fish. Front Endocrinol 10:279

    Article  Google Scholar 

  • Sarter K, Leimgruber E, Gobet F, Agrawal V, Dunand-Sauthier I, Barras E, Mastelic-Gavillet B, Kamath A, Fontannaz P, Guéry L, Duraes F, Lippens C, Ravn U, Santiago-Raber ML, Magistrelli G, Fischer N, Siegrist CA, Hugues S, Reith W (2016) Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes. J Exp Med 213:177–187

    CAS  Article  Google Scholar 

  • Scharf S (2012) Identi cation of novel molecular factors involved in individual stress vulnerability. Ludwig-Maximilians-Universität München

  • Scott GR, Johnston IA (2012) Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proc Natl Acad Sci USA 109:14247–14252

    CAS  Article  Google Scholar 

  • Shi L, Zhu H, Ye S, Wang P, Liu J, Liu X, Li Z (2020) Fish assemblage and biotic integrity assessment in Shihoudian Lake. Chinese J Ecol 39:2646–2656

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloricrestriction, and aging. Science 273:59–63

    CAS  Article  Google Scholar 

  • Soyano K, Mushirobira Y (2018) The mechanism of low-temperature tolerance in fish. Adv Exp Med Biol 1081:149–164

    CAS  Article  Google Scholar 

  • Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Parrinello N, Bianchet MA, Amzel LM (2011) Structural and functional diversity of the lectin repertoire in teleost fish: Relevance to innate and adaptive immunity. Dev Comp Immunol 35:1388–1399

    CAS  Article  Google Scholar 

  • Velmurugan BK, Chan CR, Weng CF (2019) Innate-immune responses of tilapia (Oreochromis mossambicus) exposure to acute cold stress. J Cell Physiol. Advance online publication

  • Verleih M, Borchel A, Krasnov A, Rebl A, Korytář T, Kühn C, Goldammer T (2015) Impact of thermal stress on kidney-specific gene expression in farmed regional and imported rainbow trout. Marine Biotechnol (New York, N.Y.) 17:576–592

  • Wang Q, Tan X, Jiao S, You F, Zhang PJ (2014) Analyzing cold tolerance mechanism in transgenic zebrafish (Danio rerio). PLoS One 9:e102492

    Article  Google Scholar 

  • Wu Y, Zhou Z, Pan Y, Zhao J, Xu P (2021) GWAS identified candidate variants and genes associated with acute heat tolerance of large yellow croaker. Aquaculture 540(18).

  • Xu H, Zhang DL, Yu DH, Lv CH, Luo HY, Wang ZY (2015) Molecular cloning and expression analysis of scd1 gene from large yellow croaker Larimichthys crocea under cold stress. Gene 568:100–108

    CAS  Article  Google Scholar 

  • Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    CAS  Article  Google Scholar 

  • Zeng J, Long F, Wang J, Zhao J, Ke Q, Gong J, Bai Y, Deng Y, Jiang P, Qu A, Tong B, Suo N, Wang Y, He Q, Pu F, Zhou T, Xu P (2022) GWAS reveals heritable individual variations in the inherent swimming performance of juvenile large yellow croaker. Aquaculture 559.

  • Zhao J, Bai H, Ke Q, Li B, Zhou Z, Wang H, Chen B, Pu F, Zhou T, Xu P (2020) Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker. Aquaculture 531(30).

  • Zhao J, Zhou T, Bai H, Ke Q, Li B, Bai M, Zhou Z, Pu F, Zheng W, Xu P (2021) Genome-wide association analysis reveals the genetic architecture of parasite (Cryptocaryon irritans) resistance in large yellow croaker (Larimichthys crocea). Marine Biotechnol 23:242–254

  • Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824

    CAS  Article  Google Scholar 

  • Ziv L, Muto A, Schoonheim PJ, Meijsing SH, Strasser D, Ingraham HA, Schaaf MJ, Yamamoto KR, Baier H (2013) An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Mol Psychiatry 18:681–691

    CAS  Article  Google Scholar 

Download references


We would like to thank Ningde Fufa Fisheries Company Limited for providing the experimental place.


This study was funded by the National Natural Science Foundation of China (U21A20264); the Local Science and Technology Development Project Guide by The Central Government (2019L3032); the Special Foundation for Major Research Program of Fujian Province (2020NZ08003); Open Research Fund Project of State Key Laboratory of Large Yellow Croaker Breeding (LYC2019RS02, LYC2019RS03); the Fundamental Research Funds for the Central Universities (20720200110); the China Agriculture Research System (CARS-47); and “Science and Technology Innovation 2025” Major Special Project of Ningbo City (2021Z002).

Author information

Authors and Affiliations



PX conceived and supervised this study. YW designed the experiment. YW, HB, HL, and QK conducted the cold challenge experiment and collected samples. NS extracted the DNA and constructed the ddRAD libraries. NS and YW analyzed the data, made the charts, and drafted this manuscript. ZZ and QH helped in data analysis and DNA extraction. PX revised this manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Peng Xu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suo, N., Wu, Y., Zhou, Z. et al. Genome-Wide Association and Expression Analysis Revealed the Candidate Variants and Molecular Underpinnings of Cold-Stress Response in Large Yellow Croaker. Mar Biotechnol (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Large yellow croaker
  • Cold tolerance
  • Genome-wide association study
  • Transcriptome