Skip to main content
Log in

Comprehensive Transcriptome Analysis of Gonadal and Somatic Tissues for Identification of Sex-Related Genes in the Largemouth Bass Micropterus salmoides

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Largemouth bass (Micropterus salmoides) is an economically important fish. It can spawn many times during a breeding season, and there are no obvious morphological characteristics to distinguish male and female juvenile fish. So far, little is known about the genes regulating their sexual development in this species. Here, we performed RNA sequencing (RNA-Seq) analysis of the testis, ovary, and somatic tissue to identify sex-related genes in the largemouth bass. A total of 51,672 unigenes were obtained via the transcriptome analysis, and 5900 differential expression genes (DEGs), including 3028 up-regulated and 2872 down-regulated DEGs, were obtained in the somatic tissue, testis, and ovary. DEGs were retrieved by making comparisons: somatic tissue vs testis (1733-up and 1382-down), testis vs ovary (841-up and 807-down), and ovary vs somatic tissue (454-up and 683-down). Finally, functional annotation identified 22 key sex-related DEGs, including 13 testis-biased DEGs (dmrt1, cyp11b1, sox9, spata4, spata22, spata17, fshr, fem-1a, wt1, daz1, amh, vasa, and piwi1) and 9 ovary-biased DEGs (foxl2, gdf9, zp3, sox3, cyp19a, bmp15, fem-1b, fig. la, and piwi2). This result was further confirmed by the tissue expression detection via RT-PCR and RT-qPCR. Protein–protein interacting (PPI) network analysis revealed that the testis-specific dmrt1 interacts directly with the testis-biased DEGs (cyp11b1 and spata4) and the ovary-biased DEGs (foxl2, gdf9, zp3, sox3, cyp19a, and bmp15), suggesting that the dmrt1 as a sex-determining gene can play a dual role through inducing the testis-biased DEGs and inhibiting the ovary-biased DEGs during the testicular development. Our present results provide useful molecular data for a better understanding of sexual development in the largemouth bass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adolfi MC, Carreira AC, Jesus LW, Bogerd J, Funes RM, Schartl M, Sogayar MC, Borella MI (2015) Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish Astyanax altiparanae. Reprod Biol Endocrinol 13. https://doi.org/10.1186/1477-7827-13-2

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2013) Differential expression of RNA-Seq data at the gene level–the DESeq package. EMBL

  • Bai JJ, Lutz-Carrillo DJ, Quan YC, Liang SX (2008) Taxonomic status and genetic diversity of cultured largemouth bass Micropterus salmoides in China. Aquaculture 278:27–30

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng GC, Li SJ, Xie J, Bai JJ, Chen KC, Ma DM, Jiang XY, Lao HH, Yu LY (2011) Characterization of a ranavirus isolated from cultured largemouth bass (Micropterus salmoides) in China. Aquaculture 312:198–204

    Article  CAS  Google Scholar 

  • Diaz N, Ribas L, Piferrer F (2014) Effects of changes in food supply at the time of sex differentiation on the gonadal transcriptome of juvenile fish. Implications for natural and farmed populations. Plos One 9. https://doi.org/10.1371/journal.pone.0111304

  • Ding WD, Cao LP, Cao ZM, Bing XW (2020) Transcriptome analysis of blood for the discovery of sex-related genes in ricefield eelMonopterus albus. Fish Physiol Biochem 46:1507–1518

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Jiang P, Zhang J, Li X, Li S, Bai J, Fan J, Xu P (2019) High-density linkage map and mapping for sex and growth-related traits of largemouth bass (Micropterus salmoides). Front Genet 10. https://doi.org/10.3389/fgene.2019.00960

  • Du J, Zhou J, Li S, Shao J, Jiang P, Dong C, Bai J (2021) A PCR-based method for genetic sex identification and evidence of the XX/XY sex determination system in largemouth bass (Micropterus salmoides L.). Aquaculture 545. https://doi.org/10.1016/j.aquaculture.2021.737220

  • Ferraresso S, Bargelloni L, Babbucci M, Cannas R, Follesa MC, Carugati L, Melis R, Cau A, Koutrakis M, Sapounidis A, Crosetti D (2021) fshr: a fish sex-determining locus shows variable incomplete penetrance across flathead grey mullet populations. Iscience 24. https://doi.org/10.1016/j.isci.2020.101886

  • Gan RH, Wang Y, Li Z, Yu ZX, Li XY, Tong JF, Wang ZW, Zhang XJ, Zhou L, Gui JF (2021) Functional divergence of multiple duplicated Foxl2 homeologs and alleles in a recurrent polyploid fish. Mol Biol Evol 38:1995–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644-U130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, F.X., Jiang, D.N., Huang, Y.Q., Mustapha, U.F., Yang, W., Cui, X.F., Tian, C.X., Chen, H.P., Shi, H.J., Deng, S.P., Li, G.L. & Zhu, C.H. (2019). Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus). Fish Physiology and Biochemistry, 45: 1963-1980. https://doi.org/10.1007/s10695-019-00693-8

    Article  CAS  PubMed  Google Scholar 

  • He Z, Wu YS, Xie J, Wang TX, Zhang LH, Zhang WM (2012) Growth differentiation factor 9 (Gdf9) was localized in the female as well as male germ cells in a protogynous hermaphroditic teleost fish, ricefield eel Monopterus albus. Gen Comp Endocrinol 178:355–362

    Article  CAS  PubMed  Google Scholar 

  • Herpin A, Schartl M (2011) Dmrt1 genes at the crossroads: a widespread and central class of sexual development factors in fish. FEBS J 278:1010–1019

    Article  CAS  PubMed  Google Scholar 

  • Hu QM, Tian HF, Li W, Meng Y, Wang QH, Xiao HB (2019) Identification of critical sex-biased genes in Andrias davidianus by de novo transcriptome. Mol Genet Genomics 294:287–299

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357-U54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MH, Yang HH, Li MR, Sun YL, Jiang XL, Xie QP, Wang TR, Shi HJ, Sun LN, Zhou LY, Wang DS (2013) Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology 154:4814–25

    Article  CAS  PubMed  Google Scholar 

  • Li S, Lin G, Fang W, Huang P, Gao D, Huang J, Xie J, Lu J (2020) Gonadal transcriptome analysis of sex-related genes in the protandrous yellowfin seabream (Acanthopagrus latus). Front Genet 11. https://doi.org/10.3389/fgene.2020.00709

  • Li XY, Gui JF (2018) Diverse and variable sex determination mechanisms in vertebrates. Sci China Life Sci 61:1503–1514

    Article  PubMed  Google Scholar 

  • Lin QH, Mei J, Li Z, Zhang XM, Zhou L, Gui JF (2017) Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in zebrafish. Genetics 207:1007–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HQ, Guan B, Xu J, Hou CC, Tian H, Chen HX (2013) Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson)). Mar Biotechnol 15:321–328

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15. https://doi.org/10.1186/s13059-014-0550-8

  • Maher JF, Hines RS, Futterweit W, Crawford S, Lu DY, Shen PD, Oefner P, Kazi M, Wilson JG, Subauste JS, Cowan BD (2005) FEM1A is a candidate gene for polycystic ovary syndrome. Gynecol Endocrinol 21:330–335

    Article  CAS  PubMed  Google Scholar 

  • Prucha MS, Martyniuk CJ, Doperalski NJ, Kroll KJ, Barber DS, Denslow ND (2020) Steroidogenic acute regulatory protein transcription is regulated by estrogen receptor signaling in largemouth bass ovary. Gen Comp Endocrinol 286. https://doi.org/10.1016/j.ygcen.2019.113300

  • Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10:71-U99

    Article  CAS  PubMed  Google Scholar 

  • Shao CW, Niu YC, Rastas P, Liu Y, Xie ZY, Li HD, Wang L, Jiang Y, Tai SS, Tian YS, Sakamoto T, Chen SL (2015) Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Res 22:161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirak A, Seroussi E, Cnaani A, Howe AE, Domokhovsky R, Zilberman N, Kocher TD, Hulata G, Ron M (2006) Amh and Dmrta2 genes map to tilapia (Oreochromis spp.) linkage group 23 within quantitative trait locus regions for sex determination. Genetics 174:1573–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun CF, Li J, Dong JJ, Niu YC, Hu J, Lian JM, Li WH, Li J, Tian YY, Shi Q, Ye X (2021) Chromosome-level genome assembly for the largemouth bass Micropterus salmoides provides insights into adaptation to fresh and brackish water. Mol Ecol Resour 21:301–315

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu K, Feng B, Zhang Z, Wang R, Tang L, Li W, Li Q, Piferrer F, Shao C (2019) Transcriptome of gonads from high temperature induced sex reversal during sex determination and differentiation in Chinese tongue sole Cynoglossus semilaevis. Front Genet 10. https://doi.org/10.3389/fgene.2019.01128

  • Webster KA, Schach U, Ordaz A, Steinfeld JS, Draper BW, Siegfried KR (2017) Dmrt1 is necessary for male sexual development in zebrafish. Dev Biol 422:33–46

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Hu YC, Han JL, Xiao K, Liu XQ, Tan C, Zeng QK, Du HJ (2020) Genome-wide analysis of the Chinese sturgeon sox gene family: identification, characterisation and expression profiles of different tissues. J Fish Biol 96:175–184

    Article  CAS  PubMed  Google Scholar 

  • Yazawa T, Uesaka M, Inaoka Y, Mizutani T, Sekiguchi T, Kajitani T, Kitano T, Umezawa A, Miyamoto K (2008) Cyp11b1 is induced in the murine gonad by luteinizing hormone/human chorionic gonadotropin and involved in the production of 11-ketotestosterone, a major fish androgen: conservation and evolution of the androgen metabolic pathway. Endocrinol 149:1786–1792

    Article  CAS  PubMed  Google Scholar 

  • Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H, Araki K, Morohashi KI, Ozato K (2002) sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev 63:5–16

    Article  CAS  PubMed  Google Scholar 

  • Yuan WL, Jiang SW, Sun D, Wu ZC, Wei C, Dai CX, Jiang LH, Peng SH (2019) Transcriptome profiling analysis of sex-based differentially expressed mRNAs and lncRNAs in the brains of mature zebrafish (Danio rerio) Bmc. Genomics 20. https://doi.org/10.1186/s12864-019-6197-9

  • Zhang Z, Wu K, Ren Z, Ge W (2020a) Genetic evidence for Amh modulation of gonadotropin actions to control gonadal homeostasis and gametogenesis in zebrafish and its noncanonical signaling through Bmpr2a receptor. Development 147. https://doi.org/10.1242/dev.189811

  • Zhang Z, Zhu B, Chen W, Ge W (2020b) Anti-Mullerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish Mol Cell Endocrinol 517. https://doi.org/10.1016/j.mce.2020b.110963

Download references

Acknowledgements

The authors would like to thank Mr. Hui-Ren Qian, the manager of Shanghai Blue Sea Aquaculture Farm, for kindly providing the fish samples, and Shanghai OE Biotech for the help in analysis of the sequencing data.

Funding

Key Technologies Research and Development Program, 2018YFD0900201, Gao-Feng Qiu.

Author information

Authors and Affiliations

Authors

Contributions

Wen-Zhi Guan collected fish samples, analyzed the data and wrote the paper. Kai Jiang performed the experiments, analyzed the data and revised the manuscript. Xing-Lin Lai helped to perform the experiments. Yao-Ting Dong helped to analyze partial data. Gao-Feng Qiu conceived the experiments and finished the final version of the manuscript.

Corresponding author

Correspondence to Gao-Feng Qiu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, WZ., Jiang, K., Lai, XL. et al. Comprehensive Transcriptome Analysis of Gonadal and Somatic Tissues for Identification of Sex-Related Genes in the Largemouth Bass Micropterus salmoides. Mar Biotechnol 24, 588–598 (2022). https://doi.org/10.1007/s10126-022-10127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10127-x

Keywords

Navigation