Skip to main content
Log in

Molecular Insights into Lipoxygenases in Diatoms Based on Structure Prediction: a Pioneering Study on Lipoxygenases Found in Pseudo-nitzschia arenysensis and Fragilariopsis cylindrus

  • Review Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Diatoms produce a variety of oxylipins which are oxygenated polyunsaturated fatty acids and are involved in chemical defense and intercellular communication, among other roles. Although the chemistry of diatom oxylipins has long been studied, the enzymes involved in their production, in particular lipoxygenase (LOX), which catalyzes the initial reaction of the synthesis, have not been discovered in diatom genomes. Recently, diatom LOXs were found in two species, Pseudo-nitzschia arenysensis (PaLOX) and Fragilariopsis cylindrus (FcLOX); however, the enzymology of these LOXs is largely unknown. In this review article, we discuss the potential functions of the diatom LOXs based on previously reported structures of LOXs derived from various organisms other than diatoms. Since the structures of PaLOX and FcLOX have not yet been solved, we discussed their functions, such as regio- and stereospecificities, on the basis of their structures predicted using a computational tool based on deep learning technology. Both diatom LOXs were predicted to conserve common core domains with relatively wide substrate-binding pockets. The stereo-determinant residues in PaLOX and FcLOX suggest S specificity. We assume that the highly conserved common core domain can be a clue to reveal unidentified lox genes from the accumulated diatom genome information with the aid of high-throughput structure prediction tools and structure-based alignment tools in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An JU, Kim SE, Oh DK (2021) Molecular insights into lipoxygenases for biocatalytic synthesis of diverse lipid mediators. Prog Lipid Res 83:101110

    Article  CAS  PubMed  Google Scholar 

  • Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    Article  CAS  PubMed  Google Scholar 

  • Arapov J, Buzancic M, Penna A, Casabianca S, Capellacci S, Andreoni F, Skejic S, Bakrac A, Straka M, Mandic JJ (2020) High proliferation of Pseudo-nitzschia cf. arenysensis in the Adriatic Sea: ecological and morphological characterisation. Mediterr Mar Sci 21:759–774

    Article  Google Scholar 

  • Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Patil S, Mapleson D, Russo MT, Vitale L, Fevola C, Maumus F, Casotti R, Mock T, Caccamo M (2017) Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. New Phytol 215:140–156

    Article  CAS  Google Scholar 

  • Borngräber S, Browner M, Gillmor S, Gerth C, Anton M, Fletterick R, Kühn H (1999) Shape and specificity in mammalian 15-lipoxygenase active site. The functional interplay of sequence determinants for the reaction specificity. J Biol Chem 274:37345–37350

    Article  PubMed  Google Scholar 

  • Borngräber S, Kuban RJ, Anton M, Kühn H (1996) Phenylalanine 353 is a primary determinant for the positional specificity of mammalian 15-lipoxygenases. J Mol Biol 264:1145–1153

    Article  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, Mcginnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, Von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van De Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Butler T, Kapoore RV, Vaidyanathan S (2020) Phaeodactylum tricornutum: a diatom cell factory. Trends Biotechnol 38:606–622

    Article  CAS  PubMed  Google Scholar 

  • Coffa G, Brash AR (2004) A single active site residue directs oxygenation stereospecificity in lipoxygenases: stereocontrol is linked to the position of oxygenation. Proc Natl Acad Sci U S A 101:15579–15584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffa G, Schneider C, Brash AR (2005) A comprehensive model of positional and stereo control in lipoxygenases. Biochem Biophys Res Commun 338:87–92

    Article  CAS  PubMed  Google Scholar 

  • Cutignano A, Lamari N, D’ippolito, G., Manzo, E., Cimino, G. & Fontana, A. (2011) Lipoxygenase products in marine diatoms: a concise analytical method to explore the functional potential of oxylipins. J Phycol 47:233–243

    Article  CAS  PubMed  Google Scholar 

  • D’ippolito G, Lamari N, Montresor M, Romano G, Cutignano A, Gerecht A, Cimino G, Fontana A (2009) 15S-lipoxygenase metabolism in the marine diatom Pseudo-nitzschia delicatissima. The New Phytol 183:1064–1071

    Article  CAS  Google Scholar 

  • D’ippolito G, Nuzzo G, Sardo A, Manzo E, Gallo C, Fontana A (2018) Lipoxygenases and lipoxygenase products in marine diatoms. Methods Enzymol 605:69–100

    Article  CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek VV (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–207

    Article  CAS  Google Scholar 

  • Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  Google Scholar 

  • Filloramo GV, Curtis BA, Blanche E, Archibald JM (2021) Re-examination of two diatom reference genomes using long-read sequencing. BMC Genomics 22:379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana A, D’ippolito G, Cutignano A, Miralto A, Ianora A, Romano G, Cimino G (2007) Chemistry of oxylipin pathways in marine diatoms. Pure Appl Chem 79:481–490

    Article  CAS  Google Scholar 

  • Galachyants YP, Zakharova YR, Petrova DP, Morozov AA, Sidorov IA, Marchenkov AM, Logacheva MD, Markelov ML, Khabudaev KV, Likhoshway YV, Grachev MA (2015) Sequencing of the complete genome of an araphid pennate diatom Synedra acus subsp. radians from Lake Baikal. Dokl Biochem Biophys 461:84–88

    Article  CAS  PubMed  Google Scholar 

  • Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J, Garreta A, Benincasa M, Fusté MC, Busquets M, Manresa A (2013) Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl Microbiol Biotechnol 97:4737–4747

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand A, Remmert M, Biegert A, Söding J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins 77:128–132

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  CAS  Google Scholar 

  • Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O’donnell VB, Kuhn H, Walther M (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys 503:161–174

    Article  CAS  PubMed  Google Scholar 

  • JGI D. 100 Diatom Genomes (URL: https://jgi.doe.gov/csp-2021-100-diatom-genomes/).

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583-9. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiyama Y, Ishizuka Y, Terauchi I, Matsuda T, Maeda Y, Yoshino T, Matsumoto M, Yabuki A, Bowler C, Tanaka T (2021) Engineered chlorophyll catabolism conferring predator resistance for microalgal biomass production. Metab Eng 66:79–86

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, Mcmanus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, Petroni G, Piganeau G, Posewitz MC, Rengefors K, Romano G, Rumpho ME, Rynearson T, Schilling KB, Schroeder DC, Simpson AG, Slamovits CH, Smith DR, Smith GJ, Smith SR, Sosik HM, Stief P, Theriot E, Twary SN, Umale PE, Vaulot D, Wawrik B, Wheeler GL, Wilson WH, Xu Y, Zingone A, Worden AZ (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889. https://doi.org/10.1371/journal.pbio.1001889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183

    Article  CAS  PubMed  Google Scholar 

  • Kuhn H, Banthiya S, Van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851:308–330

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa M, Nishide H, Nagao R, Inoue-Kashino N, Shen JR, Nakano T, Uchiyama I, Kashino Y, Ifuku K (2021) Molecular phylogeny of fucoxanthin-chlorophyll a/c proteins from Chaetoceros gracilis and Lhcq/Lhcf diversity. Physiol Plant e13598 https://doi.org/10.1111/ppl.13598

  • Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100

    Article  CAS  Google Scholar 

  • Lupette J, Jaussaud A, Vigor C, Oger C, Galano JM, Réversat G, Vercauteren J, Jouhet J, Durand T, Maréchal E (2018) Non-enzymatic synthesis of bioactive isoprostanoids in the diatom Phaeodactylum following oxidative stress. Plant Physiol 178:1344–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda Y, Nojima D, Yoshino T, Tanaka T (2017) Structure and properties of oil bodies in diatoms. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0408

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda Y, Tsuru Y, Matsumoto N, Nonoyama T, Yoshino T, Matsumoto M, Tanaka T (2021a) Prostaglandin production by the microalga with heterologous expression of cyclooxygenase. Biotechnol Bioeng 118:2734–2743

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Watanabe K, Kobayashi R, Yoshino T, Bowler C, Matsumoto M, Tanaka T (2021b) Chromosome scale assembly of allopolyploid genome of the diatom Fistulifera solaris. bioRxiv https://doi.org/10.1101/2021b.11.10.468027

  • Matsumoto M, Nojima D, Nonoyama T, Ikeda K, Maeda Y, Yoshino T, Tanaka T (2017) Outdoor cultivation of marine diatoms for year-round production of biofuels. Mar Drugs. https://doi.org/10.3390/md15040094

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcclure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM (2018) An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res 29:41–48

    Article  Google Scholar 

  • Miralto A, Barone G, Romano G, Poulet S, Ianora A, Russo G, Buttino I, Mazzarella G, Laabir M, Cabrini M (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    Article  CAS  Google Scholar 

  • Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2021) ColabFold-Making protein folding accessible to all. InReview. https://doi.org/10.21203/rs.3.rs-1032816/v1

    Article  Google Scholar 

  • Mock T, Otillar RP, Strauss J, Mcmullan M, Paajanen P, Schmutz J, Salamov A, Sanges R, Toseland A, Ward BJ, Allen AE, Dupont CL, Frickenhaus S, Maumus F, Veluchamy A, Wu T, Barry KW, Falciatore A, Ferrante MI, Fortunato AE, Glöckner G, Gruber A, Hipkin R, Janech MG, Kroth PG, Leese F, Lindquist EA, Lyon BR, Martin J, Mayer C, Parker M, Quesneville H, Raymond JA, Uhlig C, Valas RE, Valentin KU, Worden AZ, Armbrust EV, Clark MD, Bowler C, Green BR, Moulton V, Van Oosterhout C, Grigoriev IV (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540

    Article  CAS  PubMed  Google Scholar 

  • Neau DB, Bender G, Boeglin WE, Bartlett SG, Brash AR, Newcomer ME (2014) Crystal structure of a lipoxygenase in complex with substrate: the arachidonic acid-binding site of 8R-lipoxygenase. J Biol Chem 289:31905–31913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neau DB, Gilbert NC, Bartlett SG, Boeglin W, Brash AR, Newcomer ME (2009) The 1.85 A structure of an 8R-lipoxygenase suggests a general model for lipoxygenase product specificity. Biochemistry 48:7906–7915

    Article  CAS  PubMed  Google Scholar 

  • Newcomer ME, Brash AR (2015) The structural basis for specificity in lipoxygenase catalysis. Protein Sci 24:298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomaguchi T, Maeda Y, Yoshino T, Asahi T, Tirichine L, Bowler C, Tanaka T (2018) Homoeolog expression bias in allopolyploid oleaginous marine diatom Fistulifera solaris. BMC Genomics 19:330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira H, Sá M, Maia I, Rodrigues A, Teles I, Wijffels RH, Navalho J, Barbosa M (2021) Fucoxanthin production from Tisochrysis lutea and Phaeodactylum tricornutum at industrial scale. Algal Res 56:102322

  • Ruocco N, Albarano L, Esposito R, Zupo V, Costantini M, Ianora A (2020) Multiple roles of diatom-derived oxylipins within marine environments and their potential biotechnological applications. Mar Drugs. https://doi.org/10.3390/md18070342

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo E, D’ippolito G, Fontana A, Sarno D, D’alelio D, Busseni G, Ianora A, Von Elert E, Carotenuto Y (2020) Density-dependent oxylipin production in natural diatom communities: possible implications for plankton dynamics. ISME J 14:164–177

    Article  CAS  PubMed  Google Scholar 

  • Sabatino V, Orefice I, Marotta P, Ambrosino L, Chiusano ML, D’ippolito G, Romano G, Fontana A, Ferrante MI (2021) Silencing of a Pseudo-nitzschia arenysensis lipoxygenase transcript leads to reduced oxylipin production and impaired growth. New Phytol 233:809–822

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nanjappa D, Dorrell RG, Vieira FRJ, Kazamia E, Tirichine L, Veluchamy A, Heilig R, Aury JM, Jaillon O, Wincker P, Fussy Z, Obornik M, Muñoz-Gómez SA, Mann DG, Bowler C, Zingone A (2020) Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Sci Rep 10:9449

  • Tanaka T, Maeda Y, Veluchamy A, Tanaka M, Abida H, Maréchal E, Bowler C, Muto M, Sunaga Y, Tanaka M, Yoshino T, Taniguchi T, Fukuda Y, Nemoto M, Matsumoto M, Wong PS, Aburatani S, Fujibuchi W (2015) Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Plant Cell 27:162–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Yabuuchi T, Maeda Y, Nojima D, Matsumoto M, Yoshino T (2017) Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris. Bioresour Technol 245:567–572

    Article  CAS  PubMed  Google Scholar 

  • Teng L, Han W, Fan X, Xu D, Zhang X, Dittami SM, Ye N (2017) Evolution and expansion of the prokaryote-like lipoxygenase family in the brown alga Saccharina japonica. Front Plant Sci 8:2018. https://doi.org/10.3389/fpls.2017.02018

    Article  PubMed  PubMed Central  Google Scholar 

  • Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D (2021) Highly accurate protein structure prediction for the human proteome. Nature 596:590–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ul Hassan MN, Zainal Z, Ismail I (2015) Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol J 13:727–739

    Article  CAS  PubMed  Google Scholar 

  • Vogel R, Jansen C, Roffeis J, Reddanna P, Forsell P, Claesson HE, Kuhn H, Walther M (2010) Applicability of the triad concept for the positional specificity of mammalian lipoxygenases. J Biol Chem 285:5369–5376.

    Article  CAS  PubMed  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the JSPS KAKENHI Grant-in-Aid for Scientific Research B (grant number 21H01724) (granted to T. T.). The authors thank Ms. Miho Kikuchi for technical assistance in predicting the LOX structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Tanaka.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, Y., Tanaka, T. Molecular Insights into Lipoxygenases in Diatoms Based on Structure Prediction: a Pioneering Study on Lipoxygenases Found in Pseudo-nitzschia arenysensis and Fragilariopsis cylindrus. Mar Biotechnol 24, 468–479 (2022). https://doi.org/10.1007/s10126-022-10120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10120-4

Keywords

Navigation