Skip to main content
Log in

Heme-Peroxidase 2 Modulated by POU2F1 and SOX5 is Involved in Pigmentation in Pacific Oyster (Crassostrea gigas)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Color polymorphism is frequently observed in molluscan shellfish, while the molecular regulation of shell pigmentation is not well understood. Peroxidase is a key enzyme involved in melanogenesis. Here, we identified a heme-peroxidase 2 gene (CgHPX2), and characterized the expression patterns and transcriptional regulation of CgHPX2 in the Pacific oyster Crassostrea gigas. Tissues expression analysis showed that CgHPX2 was a mantle-specific gene and primarily expressed in the edge mantle in black shell color oyster compared with white shell oyster. In situ hybridization showed that strong signals for CgHPX2 were detected in the both inner and outer surface of the outer fold of mantle in the black shell color oyster, whereas positive signals in white shell oyster were mainly localized in the outer surface of the outer fold of mantle. In the embryos and larvae, a high expression level of CgHPX2 was detected in the trochophore stage in both black and white shell color oysters. The temporal localization of CgHPX2 was mainly detected in the shell gland and edge mantle of trochophore and calcified shell larvae, respectively. In addition, a 2227 bp of 5′ flanking region sequence of CgHPX2 was cloned, which contained a presumed core promoter region and many potential transcription factor binding sites. Further luciferase assay experiment confirmed that POU domain, class 2, transcription factor 1 (POU2F1), and SRY-box transcription factor 5 (SOX5) were involved in transcriptional regulation of CgHPX2 gene through binding to its specific promoter region. After CgPOU2F1 and CgSOX5 RNA interference, the CgHPX2 gene expression was significantly decreased. These results suggested that CgPOU2F1 and CgSOX5 might be two important transcription factors that positively regulated the expression of CgHPX2 gene, improving our understanding of the transcriptional regulation of molluscan shell pigmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Affenzeller S, Wolkenstein K, Frauendorf H, Jackson DJ (2019) Eumelanin and pheomelanin pigmentation in mollusc shells may be less common than expected: insights from mass spectrometry. Front Zool 16:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Audino JA, Marian JEAR, Wanninger A, Lopes SGBC (2015) Mantle margin morphogenesis in Nodipecten nodosus (Mollusca: Bivalvia): new insights into the development and the roles of bivalve pallial folds. BMC Dev Biol 15:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Besch R, Berking C (2014) POU transcription factors in melanocytes and melanoma. Eur J of Cell Biol 93:55–60

    Article  CAS  Google Scholar 

  • Boettiger A, Ermentrout B, Oster G (2009) The neural origins of shell structure and pattern in aquatic mollusks. Proc Natl Acad Sci U S A 106:6837–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budd A, McDougall C, Green K, Degnan BM (2014) Control of shell pigmentation by secretory tubules in the abalone mantle. Front Zool 11:62

    Article  Google Scholar 

  • Charles D (2014) Cephalopod Ink: Production, Chemistry, Functions and Applications. Mar Drugs 12:2700–2730

    Article  CAS  Google Scholar 

  • Chen Y, Hu S, Mu L, Zhao B, Wang M, Yang N, Bao G, Zhu C, Wu X (2019) Slc7a11 modulated by POU2F1 is involved in pigmentation in rabbit. Int J Mol Sci 20:2493

    Article  CAS  PubMed Central  Google Scholar 

  • Curran K, Raible DW, Lister JA (2009) Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf. Dev Biol 332:408–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debbache J, Sommer L (2014) Sox5 and chromatophores: switching pigment cell fates. Pigm Cell Melanoma Res 27:1004–1013

    Article  Google Scholar 

  • Dondra B, Mohammed AB, Sanjay N, Nivedita B, Shaloei T, Duttaroy A (2017) The essential requirement of an animal heme peroxidase protein during the wing maturation process in Drosophila. BMC Dev Biol 17:1

    Article  CAS  Google Scholar 

  • Du J, Chen X, Wang J, Chen H, Yue W, Lu G, Wang C (2019) Comparative skin transcriptome of two Oujiang color common carp (Cyprinus carpio var. color) varieties. Fish Physiol Biochem 45:177–185

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Li Q, Yu H, Kong L, Du S (2017) Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: characterization of genetic bases regulating shell formation. Sci Rep 7:45754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng D, Li Q, Yu H (2019) RNA Interference by ingested dsRNA-expressing bacteria to study shell biosynthesis and pigmentation in Crassostrea gigas. Mar Biotechnol 21:526–536

    Article  CAS  Google Scholar 

  • Feng D, Li Q, Yu H, Liu S, Du S (2020) Integrated analysis of microRNA and mRNA expression profiles in Crassostrea gigas to reveal functional miRNA and miRNA-targets regulating shell pigmentation. Sci Rep 10:20238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler DR, Meinhardt H, Prusinkiewicz P (1992) Modeling seashells. Comput Graph 26:379–387

    Article  Google Scholar 

  • Fujiwara H, Nishikawa H (2016) Functional analysis of genes involved in color pattern formation in Lepidoptera. Curr Opin Insect Sci 17:16–23

    Article  PubMed  Google Scholar 

  • Ge JL, Li Q, Yu H, Kong LF (2015) Mendelian inheritance of golden shell color in the Pacific oyster Crassostrea gigas. Aquaculture 441:21–24

    Article  Google Scholar 

  • Gerhard H, Luitfried V, Salvini-Plawen RMR (1995) Larval planktotrophy—a primitive trait in the Bilateria? Acta Zool 76:141–154

    Article  Google Scholar 

  • Granger E, McNee G, Allan V, Woodman P (2014) The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 31:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant HE, Williams ST (2018) Phylogenetic distribution of shell colour in Bivalvia (Mollusca). Biol J Linn Soc 125:377–391

    Article  Google Scholar 

  • Han ZQ, Li Q (2020) Mendelian inheritance of orange shell color in the Pacific oyster Crassostrea gigas. Aquaculture 516.

  • Herlitze I, Marie B, Marin F, Jackson DJ (2018) Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas. Gigascience 7

  • Hirosaki K, Yamashita T, Wada I, Jin HY, Jimbow K (2002) Tyrosinase and tyrosinase-related protein 1 require Rab7 for their intracellular transport. J Invest Dermatol 119:475–480

    Article  CAS  PubMed  Google Scholar 

  • Hohagen J, Jackson DJ (2013) An ancient process in a modern mollusc: early development of the shell in Lymnaea stagnalis. BMC Dev Biol 13:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohagen J, Herlitze I, Jackson DJ (2015) An optimised whole mount in situ hybridisation protocol for the mollusc Lymnaea stagnalis. BMC Dev Biol 15:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu XW, Chen HL, Yu LW, Chen XW, Mandal BK, Wang J, Wang CH (2021) Functional differentiation analysis of duplicated mlpha gene in Oujiang color common carp (Cyprinus carpio var. color) on colour formation. Aquacult Res 52:4565–4573

    Article  CAS  Google Scholar 

  • Hu Z, Song H, Zhou C, Yu ZL, Yang MJ, Zhang T (2020) De novo assembly transcriptome analysis reveals the preliminary molecular mechanism of pigmentation in juveniles of the hard clam Mercenaria mercenaria. Genomics 112:3636–3647

    Article  CAS  PubMed  Google Scholar 

  • Huan P, Wang HX, Liu BZ (2016) Assessment of housekeeping genes as internal references in quantitative expression analysis during early development of oyster. Genes Genet Syst 91:257–265

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Jiang H, Zhang L, Gu Q, Wang W, Wen Y, Luo F, Jin W, Cao X (2021) Integrated proteomic and transcriptomic analysis reveals that polymorphic shell colors vary with melanin synthesis in Bellamya purificata snail. J Proteomics 230:103950

  • Jackson DJ, Ellemor N, Degnan BM (2005) Correlating gene expression with larval competence, and the effect of age and parentage on metamorphosis in the tropical abalone Haliotis asinina. Mar Biol 147:681–697

    Article  Google Scholar 

  • Jackson DJ, Worheide G, Degnan BM (2007) Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 7:160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AB, Fogel NS, Lambert JD (2019) Growth and morphogenesis of the gastropod shell. Proc Natl Acad Sci 116:6878–6883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Shen Z, Lim JM, Handa H, Wells L, Tantin D (2013) Regulation of Oct1/Pou2f1 transcription activity by -GlcNAcylation. FASEB J 27:2807–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kin K, Kakoi S, Wada H (2009) A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program. Dev Biol 329:152–166

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemer S, Saulnier D, Gueguen Y, Planes S (2015) Identification of genes associated with shell color in the black-lipped pearl oyster. Pinctada Margaritifera BMC Genomics 16:568

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yu H, Li Q (2021) Striated myosin heavy chain gene is a crucial regulator of larval myogenesis in the pacific oyster Crassostrea gigas. Int J Biol Macromol 179:388–397

    Article  CAS  PubMed  Google Scholar 

  • Loughran NB, O’Connor B, Ó’Fágáin C, O’Connell MJ (2008) The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions. BMC Evol Biol 8:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Lu G, Yin H, Wang L, Atuganile M, Dong Z (2021) Fish pigmentation and coloration: Molecular mechanisms and aquaculture perspectives. Rev Aquacult 13:2395–2412

    Article  Google Scholar 

  • Mao J, Zhang X, Zhang W, Tian Y, Wang X, Hao Z, Chang Y (2019) Genome-wide identification, characterization and expression analysis of the MITF gene in Yesso scallops (Patinopecten yessoensis) with different shell colors. Gene 688:155–162

    Article  CAS  PubMed  Google Scholar 

  • Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, Hara I, Taniguchi Y, Naruse K, Hibi M, Kelsh RN, Hashimoto H (2018) Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. Plos Genet 14:e1007260

  • Nagao Y, Suzuki T, Shimizu A, Kimura T, Seki R, Adachi T, Inoue C, Omae Y, Kamei Y, Hara I, Taniguchi Y, Naruse K, Wakamatsu Y, Kelsh RN, Hibi M, Hashimoto H (2014) Sox5 functions as a fate switch in medaka pigment cell development. Plos Genet 10:e1004246

  • Nie H, Jiang K, Jiang L, Huo Z, Ding J, Yan X (2020) Transcriptome analysis reveals the pigmentation related genes in four different shell color strains of the Manila clam Ruditapes philippinarum. Genomics 112:2011–2020

    Article  CAS  PubMed  Google Scholar 

  • Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y (2016) Cuticle formation and pigmentation in beetles. Curr Opin Insect Sci 17:1–9

    Article  PubMed  Google Scholar 

  • Ohbayashi N, Fukuda M (2020) Recent advances in understanding the molecular basis of melanogenesis in melanocytes. F1000Research 9:608

  • Parichy DM (2003) Pigment patterns: fish in stripes and spots. Curr Biol 13:R947–R950

    Article  CAS  PubMed  Google Scholar 

  • Prud’homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution. Proc Natl Acad Sci U S A 104:8605–8612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers SL, Gelfand VI (2000) Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 12:57–62

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Luo YJ, Satoh N, Endo K (2017) Possible co-option of engrailed during brachiopod and mollusc shell development. Biol Letters 13

  • Singh PK, Iqbal N, Sirohi HV, Bairagya HR, Singh TP (2017) Structural basis of activation of mammalian heme peroxidases. Prog Biophys Mol Biol 133:49–55

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Yang A, Wu B, Zhou L, Liu Z (2015) Characterization of the mantle transcriptome of Yesso scallop (Patinopecten yessoensis): identification of genes potentially involved in biomineralization and pigmentation. Plos One 10:el022967

  • Thompson CM, North EW, White SN, Gallager SM (2014) An analysis of bivalve larval shell pigments using micro-Raman spectroscopy. J Raman Spectrosc 45:349–358

    Article  CAS  Google Scholar 

  • Tian XY, Cui ZY, Liu S, Zhou J, Cui RT (2021) Melanosome transport and regulation in development and disease. Pharmacol Ther 219:107707

  • Timmermans L (1968) Studies On Shell Formation in Molluscs. Neth J Zool 19:413–523

    Article  Google Scholar 

  • Wang J, Zhang L, Lian S, Qin Z, Zhu X, Dai X, Huang Z, Ke C, Zhou Z, Wei J, Liu P, Hu N, Zeng Q, Dong B, Dong Y, Kong D, Zhang Z, Liu S, Xia Y, Li Y, Zhao L, Xing Q, Huang X, Hu X, Bao Z, Wang S (2020) Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae. Nat Ecol Evol 4:725–736

    Article  PubMed  Google Scholar 

  • Wang P, Zhao Y, Fan R, Chen T, Dong C (2016) MicroRNA-21a-5p functions on the regulation of melanogenesis by targeting Sox5 in mouse skin melanocytes. Int J Mol Sci 17:959

    Article  CAS  PubMed Central  Google Scholar 

  • Williams ST (2017) Molluscan shell colour. Biol Rev 92:1039–1058

    Article  PubMed  Google Scholar 

  • Wittkopp PJ, Beldade P (2009) Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 20:65–71

    Article  CAS  PubMed  Google Scholar 

  • Xavier R, Patrice G (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    Article  CAS  Google Scholar 

  • Xu C, Li Q, Yu H, Liu S, Kong L, Chong J (2019a) Inheritance of shell pigmentation in Pacific oyster Crassostrea gigas. Aquaculture 512:734249

  • Xu M, Huang J, Shi Y, Zhang H, He M (2019b) Comparative transcriptomic and proteomic analysis of yellow shell and black shell pearl oysters. Pinctada Fucata Martensii BMC Genomics 20:469

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Qu B, Lin D, Deng Y, Huang R, Zhong Z (2018) Pax3 gene regulated melanin synthesis by tyrosinase pathway in Pteria penguin. Int J Mol Sci 19

  • Yu J, Zhang L, Li Y, Li R, Zhang M, Li W, Xie X, Wang S, Hu X, Bao Z (2017) Genome-wide identification and expression profiling of the SOX gene family in a bivalve mollusc Patinopecten yessoensis. Gene 627:530–537

    Article  CAS  PubMed  Google Scholar 

  • Yue C, Li Q, Yu H (2021) Variance in expression and localization of sex-related genes CgDsx, CgBHMG1 and CgFoxl2 during diploid and triploid Pacific oyster Crassostrea gigas gonad differentiation. Gene 790:145692

  • Zhang M, Chen X, Zhang J, Li J, Bai Z (2021) Cloning of a HcCreb gene and analysis of its effects on nacre color and melanin synthesis in Hyriopsis cumingii. PLoS One 16:e0251452

  • Zhang S, Wang H, Yu J, Jiang F, Yue X, Liu B (2018) Identification of a gene encoding microphthalmia-associated transcription factor and its association with shell color in the clam Meretrix petechialis. Comp. Biochem Physiol. Part b: Biochem Mol Biol 225:75–83

    CAS  Google Scholar 

  • Zhu YJ, Li Q, Yu H, Liu SK, Kong LF (2021) Shell biosynthesis and pigmentation as revealed by the expression of tyrosinase and tyrosinase-like protein genes in Pacific oyster (Crassostrea gigas) with different shell colors. Mar Biotechnol

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (31972789), Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province (2020LZGC016), China Agriculture Research System Project (CARS-49), Science and Technology Development Project of Weihai City (2018NS01), and Industrial Development Project of Qingdao City (20–3-4–16-nsh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, Y., Li, Q. & Yu, H. Heme-Peroxidase 2 Modulated by POU2F1 and SOX5 is Involved in Pigmentation in Pacific Oyster (Crassostrea gigas). Mar Biotechnol 24, 263–275 (2022). https://doi.org/10.1007/s10126-022-10098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10098-z

Keywords

Navigation