Skip to main content
Log in

A Leap Forward Towards Unraveling Newer Anti-infective Agents from an Unconventional Source: a Draft Genome Sequence Illuminating the Future Promise of Marine Heterotrophic Bacillus sp. Against Drug-Resistant Pathogens

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

During the previous decade, genome-built researches on marine heterotrophic microorganisms displayed the chemical heterogeneity of natural product resources coupled with the efficacies of harnessing the genetic divergence in various strains. Herein, we describe the whole genome data of heterotrophic Bacillus amyloliquefaciens MB6 (MTCC 12,716), isolated from a marine macroalga Hypnea valentiae, a 4,107,511-bp circular chromosome comprising 186 contigs, with 4154 protein-coding DNA sequences and a coding ratio of 86%. Simultaneously, bioactivity-guided purification of the bacterial extract resulted in six polyketide classes of compounds with promising antibacterial activity. Draft genome sequence of B. amyloliquefaciens MB6 unveiled biosynthetic gene clusters (BGCs) engaged in the biosynthesis of polyketide–originated macrolactones with prospective antagonistic activity (MIC ≤ 5 µg/mL) against nosocomial pathogens. Genome analysis manifested 34 putative BGCs necessitated to synthesize biologically active polyketide-originated frameworks or their derivatives. These results provide insights into the genetic basis of heterotrophic B. amyloliquefaciens MTCC 12,716 as a prospective lead for biotechnological and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

The whole-genome sequence of the candidate bacteria was submitted in GenBank with an accession number of QKQQ00000000.

Abbreviations

135DEPT :

Distortionless enhancement by polarization transfer

13C NMR:

Carbon-13 nuclear magnetic resonance

ACP:

Acyl carrier proteins

AT:

Acyl transferase

ATCC:

American Type Culture Collection

BGC:

Biosynthetic gene cluster

CHCI3 :

Chloroform

COSY:

Correlation spectroscopy

DH:

Dehydratase

ER:

Enoyl reductase

EtOAc:

Ethyl acetate

FTIR:

Fourier-transform infrared

GC-MS:

Gas chromatography-mass spectrometry

HMBC:

Heteronuclear multiple-bond correlation spectroscopy

HPLC:

High pressure liquid chromatography

HRESIMS:

High resolution electrospray ionization mass spectrometry

HSQC:

Heteronuclear single-quantum correlation spectroscopy

KS:

Ketosynthase

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MeOH:

Methanol

MHA :

Mueller–Hinton agar

MIC:

Minimum inhibitory concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

MTCC:

Microbial Type Culture Collection and Gene Bank

NCBI BlastP :

National Center for Biotechnology Information Basic Local Alignment Search for Protein

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear overhauser effect spectroscopy

nrps :

Non-ribosomal peptide synthetase gene

PBP:

Penicillin-binding protein

PDF:

Peptide deformylase

pks :

Polyketide synthase gene

RCSB pdb:

Research Collaborator for Structural Bioinformatics Protein Databank

RP-C18 HPLC:

Reverse phase C18 high pressure liquid chromatography

rRNA:

Ribosomal RNA

TE:

Thioesterase

TLC:

Thin layer chromatography

VREfs:

Vancomycin-resistant Enterococcus faecalis

References

  • Aleti G, Sessitsch A, Brader G (2015) Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput Struct Biotechnol J 13:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  • Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41(2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Baruzzi F, Quintieri L, Morea, M, Caputo L (2011) Antimicrobial compounds produced by Bacillus spp. and applications in food. In: Science against microbial pathogens: communicating current research and technological advances (Méndez-Vilas, A., Ed.); Formatex Research Center, Spain, pp 1102–1111

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30(2):237–323

    Article  CAS  PubMed  Google Scholar 

  • Brakhage A (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakraborty K, Kizhakkekalam VK, Joy M, Chakraborty RD (2020) Moving away from traditional antibiotic treatment: can macrocyclic lactones from marine macroalga-associated heterotroph be the alternatives? Appl Microbiol Biotechnol 104(16):7117–7130

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK (2014) Polyketide family of novel antibacterial 7-O-methyl-5′-hydroxy-3′-heptenoate-macrolactin from seaweed-associated Bacillus subtilis MTCC 10403. J Agric Food Chem 62(50):12194–12208

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK (2017) Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403. Phytochemistry 142:112–125

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland-Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158(2):412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3(5):544–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan B, Wang C, Song X, Ding X, Wu L, Wu H Gao X, Borriss R (2018) B. velezensis FZB42 in 2018: the Gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9:2491

  • Fickers P (2012) Antibiotic compounds from Bacillus: why are they so amazing? Am J Biochem Biotechnol 8(1):38–43

    Article  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106(8):3468–3496

    Article  CAS  PubMed  Google Scholar 

  • Graça AP, Viana F, Bondoso J, Correia MI, Gomes L, Humanes M, Reis A, Xavier JR, Gaspar H, Lage OM (2015) The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front Microbiol 6:389

    PubMed  PubMed Central  Google Scholar 

  • Grubbs KJ, Bleich RM, Santa Maria KC, Allen SE, Farag S, AgBiome Team, Shank EA, Bowers AA (2017) Large-scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. mSystems. 2(6):e00040–17.

  • Harwood CR (1992) Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 10(7):247–256

    Article  CAS  PubMed  Google Scholar 

  • Harwood CR, Mouillon JM, Pohl S, Arnau J (2018) Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 42(6):721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 35(9):992–1014

    Article  CAS  PubMed  Google Scholar 

  • Helfrich EJ, Piel J (2016) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 33(2):231–316

    Article  CAS  PubMed  Google Scholar 

  • Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of non-ribosomal peptide and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics 272(4):363–378

    Article  CAS  PubMed  Google Scholar 

  • Jaruchoktaweechai C, Suwanborirux K, Tanasupawatt S, Kittakoop P, Menasveta P (2000) New macrolactins from a marine Bacillus sp. Sc026. J Nat Prod 63(7):984–986

    Article  CAS  PubMed  Google Scholar 

  • Jensen PR, Chavarria KL, Fenical W, Moore BS, Ziemert N (2014) Challenges and triumphs to genomics-based natural product discovery. J Ind Microbiol Biotechnol 41(2):203–209

    Article  CAS  PubMed  Google Scholar 

  • Kadaikunnan S, Rejiniemon TS, Khaled JM, Alharbi NS, Mothana R (2015) In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann Clin Microbiol Antimicrob 14:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlovsky P (2008) Secondary metabolites in soil ecology. In: Secondary metabolites in soil ecology (Karlovsky, P., Ed.), Soil Biol, volume 14; Springer, Berlin, Heidelberg, pp 1–19

  • Kizhakkekalam VK, Chakraborty K (2019) Pharmacological properties of marine macroalgae-associated heterotrophic bacteria. Arch Microbiol 201(4):505–518

    Article  CAS  PubMed  Google Scholar 

  • Kizhakkekalam VK, Chakraborty K (2020) Marine macroalgae-associated heterotrophic Firmicutes and Gamma-proteobacteria: prospective anti-infective agents against multidrug resistant pathogens. Arch Microbiol 202(4):905–920

    Article  CAS  PubMed  Google Scholar 

  • Kizhakkekalam VK, Chakraborty K, Joy M (2020) Oxygenated elansolid-type of polyketide spanned macrolides from a marine heterotrophic Bacillus as prospective antimicrobial agents against multidrug-resistant pathogens. Int J Antimicrob Agents 55(3):105892

  • Krzywinski M, Bosdet I, Mathewson C, Wye N, Brebner J, Chiu R, Corbett R et al (2007) A BAC clone fingerprinting approach to the detection of human genome rearrangements. Genome Biol 8(10):R224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Betero MG et al (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256

    Article  CAS  PubMed  Google Scholar 

  • Lachnit T, Meske D, Wahl M, Harder T, Schmitz R (2011) Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ Microbiol 13(3):655–665

    Article  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magrane M (2011) UniProt Consortium, UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford): Mar 29: bar009. https://doi.org/10.1093/database/bar009

  • Medema MH, Fischbach MA (2015) Computational approaches to natural product discovery. Nat Chem Biol 11(9):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen PB, Bjørnvad ME, Rasmussen MD, Petersen JN (2002) Cytotoxic potential of industrial strains of Bacillus sp. Regul Toxicol Pharmacol 36(2):155–161

    Article  CAS  PubMed  Google Scholar 

  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative Genomics Viewer. Nat Biotechnol 29(1):24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Tabarez M, Jansen R, Sylla M, Lünsdorf H, Häussler S, Santosa DA, Timmis KN, Molinari G (2006) 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrob Agents Chemother 50(5):1701–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rückert C, Blom J, Chen X, Reva O, Boriss R (2011) Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 155(1):78–85

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EW (2005) From chemical structure to environmental biosynthetic pathways: navigating marine invertebrate-bacteria associations. Trends Biotechnol 23(9):437–440

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Chen X-H, Vater J, Franke P, Nicholson G, Borriss R, Süssmuth RD (2007) Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod 70(9):1417–1423

    Article  CAS  PubMed  Google Scholar 

  • Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL, Wyatt MA, Magarvey NA (2015) Genomes to natural products PRediction informatics for secondary metabolomes (PRISM). Nucleic Acids Res 43(20):9645–9662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmetz H, Gerth K, Jansen R, Schläger N, Dehn R, Reinecke S, Kirschning A, Müller R (2011) Elansolid A, A unique macrolide antibiotic from Chitinophaga sancti isolated as two stable atropisomers. Angew Chem Int Ed Engl 50(2):532–536

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Li J, Millán-Aguiñaga N, Zhang JJ, O’Neill EC, Ugalde JA, Jensen PR, Mantovani SM, Moore BS (2015) Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem Biol 10(12):2841–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46(W1):W278–W281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Lanen SG, Shen B (2006) Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol 9(3):252–260

    Article  PubMed  CAS  Google Scholar 

  • van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333

    Article  PubMed  CAS  Google Scholar 

  • Weber T (2014) In silico tools for the analysis of antibiotic biosynthetic pathways. Int J Med Microbiol 304(3-4):230–235

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2017) Global tuberculosis report. WHO Department of Communications, Geneva, Switzerland. https://doi.org/10.1001/jama.2014.11450

  • Xu HM, Rong YJ, Zhao MX, Song B, Chi ZM (2014) Antibacterial activity of the lipopetides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals. Appl Microbiol Biotechnol 98(1):127–136

    Article  CAS  PubMed  Google Scholar 

  • Zhang MM, Wang Y, Ang EL, Zhao H (2016) Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 33(8):963–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XQ (2011) Genome-based studies of marine microorganisms to maximize the diversity of natural products discovery for medical treatments. Evid Based Complement Alternat Med 2011:384572

  • Zheng Y, Saitou A, Wang CM, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S (2019) Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Front Microbiol 10:893

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, Central Marine Fisheries Research Institute and Dean, Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology for support. Thanks are due to the Head, Marine Biotechnology Division, Central Marine Fisheries Research Institute for facilitating the research activity.

Funding

This work was funded by the Indian Council of Agricultural Research (ICAR) under the project titled as “Development of Bioactive Pharmacophores from Marine Organisms” (Grant No. MBT/HLT/SUB23) and Kerala State Council for Science, Technology and Environment (Grant No. 040/FSHP-LSS/2014/KSCSTE).

Author information

Authors and Affiliations

Authors

Contributions

KC conceived and designed the research, acquired funds, and conducted the experiments. VKK acquired funds and conducted the experiments. VKK and RDC analyzed the genome data. KC and MJ purified the compounds and analyzed the spectroscopic data. All the authors drafted and approved the manuscript.

Corresponding author

Correspondence to Kajal Chakraborty.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 18348 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Kizhakkekalam, V.K., Joy, M. et al. A Leap Forward Towards Unraveling Newer Anti-infective Agents from an Unconventional Source: a Draft Genome Sequence Illuminating the Future Promise of Marine Heterotrophic Bacillus sp. Against Drug-Resistant Pathogens. Mar Biotechnol 23, 790–808 (2021). https://doi.org/10.1007/s10126-021-10064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10064-1

Keywords

Navigation