Skip to main content
Log in

Gill Transcriptome Analysis Revealed the Difference in Gene Expression Between Freshwater and Seawater Acclimated Guppy (Poecilia reticulata)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Guppy (Poecilia reticulata) can adapt to a wide range of salinity changes. To investigate the gene expression changes in the guppy exposed to seawater, we characterized its gill transcriptome using RNA sequencing. Experimental fish were exposed to salinity increase from 0 to 30‰ within 4 days, while control fish were cultured in freshwater (0‰ salinity). Seven days after salinity exposure, the gills were sampled and the mortality within 2 weeks was recorded. No significant difference in the cumulative mortality at the second week was found between the two groups. Transcriptomic analysis identified 3477 differentially expressed genes (DEGs), including 1067 upregulated and 2410 downregulated genes. These DEGs were enriched in several biological processes, including ion transport, ion homeostasis, ATP biosynthetic process, metabolic process, and immune system process. Oxidative phosphorylation was the most activated pathway. DEGs involved in the pathway “endoplasmic reticulum (ER)-mediated phagocytosis,” “starch and sucrose metabolism,” and “steroid biosynthesis” were mainly downregulated; chemokines and interleukins involved in “cytokine-cytokine receptor interaction” were differentially expressed. The present results suggested that oxidative phosphorylation had essential roles in osmoregulation in the gills of seawater acclimated guppy, during which the decline in the expression of genes encoding V-ATPases and calreticulin had a negative effect on the phagocytosis and immune response. Besides, several metabolic processes including “starch and sucrose metabolism” and “steroid biosynthesis” were affected. This study elucidates transcriptomic changes in osmotic regulation, metabolism, and immunity in seawater acclimated guppy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data supporting our findings are contained within the manuscript. The raw sequence data generated from this study have been deposited in the Genome Sequence Archive (GSA) database in the BIG Data Center (http://gsa.big.ac.cn/index.jsp) under the accession number CRA002620 and will be made publicly available upon acceptance of this manuscript for publishing. Shared URL: https://ngdc.cncb.ac.cn/gsa/s/BBfv9BLi

Abbreviations

act-1a :

Actinidain

actbb :

Actin, cytoplasmic 2

acvr1 :

Activin receptor type-1

amh :

Anti-Müllerian hormone

amy1 :

Alpha-amylase 1

amy2 :

Pancreatic alpha-amylase

ATP:

Adenosine triphophate

atp1a1 :

ATPase Na + /K + transporting subunit alpha 1

atp5f1a :

ATP synthase F1 subunit alpha

atp5o :

ATP synthase subunit O

atp6v1a :

V-type proton ATPase catalytic subunit A

atp6v1b2 :

V-type proton ATPase subunit B, brain isoform

atp6v1e1 :

V-type proton ATPase subunit E 1

BP:

Biological process

ca1 :

Carbonic anhydrase 1

calr :

Calreticulin

CC:

Cellular component

ccl19 :

C-C chemokine ligand 19

ccl20 :

C-C chemokine ligand 20

ccl21 :

C-C chemokine ligand 21

ccl4 :

C-C motif chemokine ligand 4

ccr4 :

C-C chemokine receptor type 4

ccr6 :

C-C chemokine receptor type 6

cDNA:

Complementary DNA

cftr :

Cystic fibrosis transmembrane conductance regulator

cox4i1 :

Cytochrome C oxidase subunit IV isoform 1

cox5a :

Cytochrome c oxidase subunits Va

Ct:

Cycle threshold

ctsl :

Procathepsin L

cyia :

Actin, cytoskeletal 1A

cyp24a1 :

Cytochrome P450 family 24 subfamily A member 1

cyp2r1 :

Cytochrome P450 family 2 subfamily R member 1

cyp51a1 :

Cytochrome P450 family 51 subfamily A member 1

DEGs:

Differentially expressed genes

ebp :

Emopamil-binding protein

edar :

Ectodysplasin A receptor

enpp3 :

Ectonucleotide pyrophosphatase/ phosphodiesterase 3

ER:

Endoplasmic reticulum

faxdc2 :

Fatty acid hydroxylase domain containing 2

FC:

Fold change

FDR:

False discovery rate

g6pc :

Glucose-6-phosphatase

gapdh :

Glyceraldehyde-3-phosphate dehydrogenase

gck :

Glucokinase

Gh/Igf1:

Growth hormone/insulin growth factor-1

GO:

Gene ontology

gpi :

Glucose phosphate isomerase

GSA:

Genome Sequence Archive

gys2 :

Glycogen synthase 2

h2-aa :

H-2 class II histocompatibility antigen, A-U alpha chain

h2-eb1 :

Ig-like domain-containing protein

h2-t23 :

H-2 class I histocompatibility antigen, D-37 alpha chain

hla-c :

Human leukocyte antigen class I C

hla-dpa1 :

HLA Class II histocompatibility antigen, DP alpha 1 chain

hla-dra :

HLA Class II histocompatibility antigen, DR alpha chain

hsd17b7 :

17-Beta-hydroxysteroid dehydrogenase 7

ifnar2 :

Interferon alpha/beta receptor 2

il-1 :

Interleukin-1

il10 :

Interleukin-10

il10ra :

Interleukin 10 receptor subunit alpha

il11 :

Interleukin-11

il12 :

Interleukin-12

il12rb2 :

Interleukin 12 receptor beta 2

il-17 :

Interleukin-17

il17rb :

Interleukin 17 receptor beta

il1b :

Interleukin 1, beta

il1r2 :

Interleukin 1 receptor type 2

il1rap :

Interleukin 1 receptor accessory protein

il20rb :

Interleukin 20 receptor beta

il26 :

Interleukin-26

il8 :

Interleukin-8

iTRAQ:

Isobaric tags for relative and absolute quantification

KEGG:

Kyoto encyclopedia of genes and genomes

kita:

Tyrosine-protein kinase kit

lss :

Lanosterol synthase

lta :

Lymphotoxins A

ltbr :

Lymphotoxin-beta receptor

MF:

Molecular function

mgam :

Maltase-glucoamylase

MHC-I:

Major histocompatibility complex class I

MHC-II:

Major histocompatibility complex class II

mpo :

Myeloperoxidase

mr1 :

MHC-related protein 1

mx:

Myxovirus resistance

NADH:

Nicotinamide adenine dinucleotide

ndufa1 :

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 1

ndufa4 :

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 4

ndufs1 :

NADH dehydrogenase (ubiquinone) Fe-S protein 1

ndufv1 :

NADH dehydrogenase ubiquinone flavoprotein

nos1 :

Nitric oxide synthase

nsdhl :

Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating

odc1 :

Ornithine decarboxylase 1

PDGF:

Platelet-derived growth factor

pgm1 :

Phosphoglucomutase-1

pygl :

Glycogen phosphorylase, liver form

pH:

Potential of hydrogen

prl :

Prolactin

pygm :

Glycogen phosphorylase, muscle form

qPCR:

Quantitative real-time PCR

RIN:

RNA integrity number

RNA-seq:

High-throughput RNA sequencing

ROS:

Reactive oxygen species

rt1-b :

RT1 class II histocompatibility antigen

RT-PCR:

Reverse transcription polymerase chain reaction

scn1b :

Sodium voltage-gated channel beta subunit 1

sec61a :

Protein transport protein sec61 subunit alpha

slc4a4 :

Sus scrofa domestica sodium bicarbonate cotransporter member 4

slc9a2 :

Solute carrier family 9 (sodium/hydrogen exchanger), member 2

slc12a2 :

Solute carrier family 12 member 2

slc12a3 :

Solute carrier family 12 member 3

slc13a1 :

Solute carrier family 13 member 1

soat1 :

Sterol O-acyltransferase 1

SPSS:

Statistical product and service solutions

tcirg1 :

T-cell immune regulator 1

TGF-β:

Transforming growth factor-β

tm7sf2 :

Transmembrane 7 superfamily member 2

TNF:

Tumor necrosis factor

treh :

Trehalase

trpv4 :

Transient receptor potential cation channel subfamily V member 4

ugp2 :

UTP-glucose-1-phosphate uridylyltransferase

ugt1a1 :

UDP glucuronosyltransferase family 1 member A1

ugt1a5 :

UDP glucuronosyltransferase family 1 member A5

ugt2a1 :

UDP glucuronosyltransferase family 2 member A1

ugt2a2 :

UDP glucuronosyltransferase family 2 member A2

ugt2a3 :

UDP glucuronosyltransferase family 2 member A3

uqcrfs1 :

Ubiquinol-cytochrome C reductase iron-sulfur subunit 1

uqcrh :

Ubiquinol-cytochrome c reductase hinge protein

References

  • Aptsiauri N, Osuna FRC (2008) HLA Class I. In: Schwab M. (eds) Encyclopedia of Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47648-1-2766

  • Aruna A, Nagarajan G, Chang CF (2015) The acute salinity changes activate the dual pathways of endocrine responses in the brain and pituitary of tilapia. Gen Comp Endocr 211:154–164.

    Article  CAS  PubMed  Google Scholar 

  • Beckman B, Mustafa T (1992) Arachidonic acid metabolism in gill homogenate and isolated gill cells from rainbow trout, Oncorhynchus mykiss: the effect of osmolality, electrolytes and prolactin. Fish Physiol Biochem 10:213–222.

    Article  CAS  PubMed  Google Scholar 

  • Bibi A, Agarwal NK, Dihazi GH et al (2011) Calreticulin is crucial for calcium homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress. Int J Biochem Cell Biol. 43: 1187–1197.

  • Cardol P, Figueroa F, Remacle C, Franzén L, González-Halphen D (2009) Chapter 13 - oxidative phosphorylation: building blocks and related components. The Chlamydomonas Sourcebook. 2nd pp. 469–502. https://doi.org/10.1016/B978-0-12-370873-1.00021-6

  • Castilho PC, Martins IA, Bianchini A (2001) Gill Na(+), K(+)-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana, 1851 (Decapoda, Grapsidae). J Exp Mar Bio Ecol 256:215–227.

    Article  CAS  Google Scholar 

  • Castro R, Bromage E, Abós B, Pignatelli J, González Granja A, Luque A et al (2014) CCR7 is mainly expressed in teleost gills, where it defines an IgD+IgM- B lymphocyte subset. J Immunol 192:1257–1266.

    Article  CAS  PubMed  Google Scholar 

  • Chang JC, Wu SM, Tseng YC, Lee YC, Baba O, Hwang PP (2007) Regulation of glycogen metabolism in gills and liver of the euryhaline tilapia (Oreochromis mossambicus) during acclimation to seawater. J Exp Biol 210:3494–3504.

    Article  CAS  PubMed  Google Scholar 

  • Chervinski J (1984) Salinity tolerance of the guppy, Poecilia reticulata Peters. J Fish Biol 24:449–452.

    Article  Google Scholar 

  • Chou JY, Mansfield BC (2008) Mutations in the glucose-6-phosphatase-a (G6PC) gene that cause type I a glycogen storage disease. Hum Mutat 29:921–930.

  • El-Leithy AAA, Hemeda SA, El Naby W, El Nahas AF, Hassan SAH, Awad ST et al (2019) Optimum salinity for Nile tilapia (Oreochromis niloticus) growth and mRNA transcripts of ion-regulation, inflammatory, stress- and immune-related genes. Fish Physiol Biochem 45:1217–1232.

    Article  CAS  PubMed  Google Scholar 

  • Endler JA, Houde AE (1995) Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution Int J Org Evolution 49:456–468.

    Article  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177.

    Article  CAS  PubMed  Google Scholar 

  • Evans DH, Piermarini PM, Potts W (2015) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652.

  • Fucikova J, Spisek R, Kroemer G et al (2021) Calreticulin and cancer. Cell Res 31:5–16.

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Dai S, Liu H, Cao Q, Yin S, Lai KP et al (2018) Identification of immune-related genes in gill cells of Japanese eels (Anguilla japonica) in adaptation to water salinity changes. Fish Shellfish Immunol 73:288–296.

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Yang Y, Meng F, Wang S, Xia S, Qian Y et al (2020) Effects of low salinity on gill and liver glycogen metabolism of great blue-spotted mudskippers ( Boleophthalmus pectinirostris). Comp Biochem Physiol C Toxicol Pharmacol 230:108709.

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Aktar S, Qin JG (2016) Salinity stress response in estuarine fishes from the Murray Estuary and Coorong. South Australia Fish Physiol Biochem 42:1571–1580.

    Article  CAS  PubMed  Google Scholar 

  • Huth TJ, Place SP (2016) Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors. BMC Genomics 17:127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanis G, Esbaugh AJ, Perry SF (2008) Branchial expression and localization SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211:2467–2477.

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Yin S, Li L, Li P, Liang F, Wang X et al (2016) iTRAQ proteomic analysis of salinity acclimation proteins in the gill of tropical marbled eel ( Anguilla marmorata). Fish Physiol Biochem 42:935–946.

    Article  CAS  PubMed  Google Scholar 

  • Kolbadinezhad SM, Coimbra J, Wilson J M (2018) Effect of dendritic organ ligation on striped eel catfish plotosus lineatus osmoregulation. PLoS One 13. https://doi.org/10.1371/journal.pone.0206206

  • Koppang EO, Fischer U, Moore L, Tranulis MA, Dijkstra JM, Köllner B et al (2010) Salmonid T cells assemble in the thymus, spleen and in novel interbranchial lymphoid tissue. J Anat 217:728–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppang E O, Kvellestad A, Fischer U (2015) Fish mucosal immunity: gill. Mucosal Health in Aquaculture. pp. 93–133. https://doi.org/10.1016/B978-0-12-417186-2.00005-4

  • Künstner A, Hoffmann M, Fraser BA, Kottler VA, Sharma E, Weigel D et al (2016) The genome of the trinidadian guppy, Poecilia reticulata, and variation in the guanapo population. PLoS One 11(12):e0169087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam SH, Lui EY, Li Z, Cai S, Sung WK, Mathavan S et al (2014) Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia. Oreochromis Mossambicus BMC Genomics 15:921.

    Article  CAS  PubMed  Google Scholar 

  • Leitemperger J, Müller TE, Cerezer C, Marins AT, de Moura LK, Loro VL (2019) Behavioural and biochemical parameters in guppy (Poecilia vivipara) following exposure to waterborne zinc in salt or hard water. Mol Biol Rep 46:3399–3409.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (san Diego, Calif) 25:402–408.

    Article  CAS  Google Scholar 

  • Mohammed-Geba K, González AA, Suárez RA, Galal-Khallaf A, Martos-Sitcha JA, Ibrahim HM et al (2017) Molecular performance of Prl and Gh/Igf1 axis in the Mediterranean meager, Argyrosomus regius, acclimated to different rearing salinities. Fish Physiol Biochem 43:203–216.

    Article  CAS  PubMed  Google Scholar 

  • Moniruzzaman M, Mukherjee J, Jacquin L, Mukherjee D, Mitra P, Ray S et al (2018) Physiological and behavioural responses to acid and osmotic stress and effects of mucuna extract in guppies. Ecotoxicol Environ Saf 163:37–46.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Taniguchi N (2001) Genetics of the guppy as a model for experiment in aquaculture. Genetica 111:279–289.

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim JJ (2001) Cytokines: past, present, and future. Int J Hematol 74:3–8.

    Article  CAS  PubMed  Google Scholar 

  • Posey AL (2010) Effects of salinity on the reproductive biology of the guppy. Lamar University - Beaumont, Poecilia reticulata

    Google Scholar 

  • Riazanski V, Gabdoulkhakova AG, Boynton LS et al (2015) TRPC6 channel translocation into phagosomal membrane augments phagosomal function. PNAS 112:E6486–E6495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro N, Streiff S, Heissler D, Elhabiri M, Ourisson G (2007) Reinforcing effect of bi- and tri-cyclopolyprenols on ‘primitive’ membranes made of polyprenyl phosphates. Tetrahedron 63:3395–3407.

    Article  CAS  Google Scholar 

  • Schmitz M, Baekelandt S, Bequet S, Kestemont P (2017) Chronic hyperosmotic stress inhibits renal Toll-Like Receptors expression in striped catfish ( Pangasianodon hypophthalmus Sauvage) exposed or not to bacterial infection. Dev Comp Immunol 73139–143. https://doi.org/10.1016/j.dci.2017.03.020

    Article  CAS  Google Scholar 

  • Shikano T, Fujio Y (2015) Immunolocalization of Na+, K+-ATPase and morphological changes in two types of chloride cells in the gill epithelium during seawater and freshwater adaptation in a euryhaline teleost, Poecilia reticulata. J Exp Zool Part B 281:80–89.

    Article  Google Scholar 

  • Si Y, Wen H, Li Y, He F, Li J, Li S et al (2018) Liver transcriptome analysis reveals extensive transcriptional plasticity during acclimation to low salinity in Cynoglossus semilaevis. BMC Genomics 19:464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolovska A, Becker C, Ip W et al (2013) Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 14:543–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Ma D, Zhu H, Liu Z, Gao F (2020) Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female ×O. urolepis hornorum male). BMC Genomics 21:110.

  • Su M, Zhou J, Duan Z, Zhang J (2019) Transcriptional analysis of renal dopamine-mediated Na(+) homeostasis response to environmental salinity stress in Scatophagus argus. BMC Genomics 20:418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:447–452.

  • Uribe-Querol E, Rosales C (2021) Phagocytosis. Reference Module in Biomedical Sciences. https://doi.org/10.1016/B978-0-12-818731-9.00049-5

    Article  Google Scholar 

  • Valenzuela-Muñoz V, Váldes JA, Gallardo-Escárate C (2021) Transcriptome profiling of long non-coding RNAs during the Atlantic salmon smoltification process. Mar Biotechnol. https://doi.org/10.1007/s10126-021-10024-9

    Article  Google Scholar 

  • Wang D, Cao Q, Zhu W, Hu Y, Zhang X, Yin S et al (2019) Individual and combined effects of salinity and lipopolysaccharides on the immune response of juvenile Takifugu fasciatus. Fish Physiol Biochem 45:965–976.

    Article  CAS  PubMed  Google Scholar 

  • Wong MK, Ozaki H, Suzuki Y, Iwasaki W, Takei Y (2014) Discovery of osmotic sensitive transcription factors in fish intestine via a transcriptomic approach. BMC genomics 15:1134. Epub 2014/12/19.

  • Xu Z, Gan L, Li T, Xu C, Chen K, Wang X et al (2015) Transcriptome profiling and molecular pathway analysis of genes in association with salinity adaptation in nile tilapia Oreochromis niloticus. PLoS One 10:e0136506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan X, He S, Liang X, Luo X, Li A, Zhou Y (2017) Food conditions and water salinity affect survival and growth of golden mandarin fish, Siniperca sherzeri, larvae through transcriptional regulation of growth and lipometabolic genes. J World Aquacult Soc. https://doi.org/10.1111/jwas.12450

    Article  Google Scholar 

  • Zhang H, Hou J, Liu H, Zhu H, Xu J (2020) Adaptive evolution of low-salinity tolerance and hypoosmotic regulation in a euryhaline teleost, Takifugu obscurus. Mar Biol 167. https://doi.org/10.1007/s00227-020-03705-x

  • Zhang X, Wen H, Wang H, Ren Y, Zhao J, Li Y (2017) Rna-seq analysis of salinity stress-responsive transcriptome in the liver of spotted sea bass ( Lateolabrax maculatus). PLoS One 12:e0173238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Benlekbir S, Rubinstein J (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:241–245.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Fujian Provincial Department of Science and Technology (Grant No. 2015R1019-13, 2018R1019-6), and General Projects of Fujian Academy of Agricultural Science (AC2017-1).

Author information

Authors and Affiliations

Authors

Contributions

HG conceived and supervised the study. XC wrote the manuscript. XC and HC conducted the salinity challenge experiment. XC and HG performed the analysis and designed the charts and tables. XC and BX extracted total RNA from the gill tissues. XC, HC, BX, and ZZ collected the samples. HG and XC revised the manuscript. YB participated in PPI analysis. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Hui Gong.

Ethics declarations

Ethics Approval

The Research Ethics Committee of Fujian Academy of Agricultural Sciences approved the study. All experimental fish procedures were performed in accordance with the regulations for the Administration of Affairs Concerning Experimental Animals, approved by the State Council of China.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 94 KB)

Supplementary file2 (RAR 2138 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Gong, H., Chi, H. et al. Gill Transcriptome Analysis Revealed the Difference in Gene Expression Between Freshwater and Seawater Acclimated Guppy (Poecilia reticulata). Mar Biotechnol 23, 615–627 (2021). https://doi.org/10.1007/s10126-021-10053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10053-4

Keywords

Navigation