Skip to main content
Log in

Development of a Method for Fucoxanthin Production Using the Haptophyte Marine Microalga Pavlova sp. OPMS 30543

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The natural pigment fucoxanthin has attracted global attention because of its superior antioxidant properties. The haptophyte marine microalgae Pavlova spp. are assumed to be promising industrial fucoxanthin producers as their lack of a cell wall could facilitate the commercialization of cultured cells as a whole food. This study screened promising Pavlova strains with high fucoxanthin content to develop an outdoor cultivation method for fucoxanthin production. Initial laboratory investigations of P. pinguis NBRC 102807, P. lutheri NBRC 102808, and Pavlova sp. OPMS 30543 identified OPMS 30543 as having the highest fucoxanthin content. The culture conditions were optimized for OPMS 30543. Compared with f/2 and Walne’s media, the use of Daigo’s IMK medium led to the highest biomass production and highest fucoxanthin accumulation. The presence of seawater elements in Daigo’s IMK medium was necessary for the growth of OPMS 30543. OPMS 30543 was then cultured outdoors using acrylic pipe photobioreactors, a plastic bag, an open tank, and a raceway pond. Acrylic pipe photobioreactors with small diameters enabled the highest biomass production. Using an acrylic pipe photobioreactor with 60-mm diameter, a fucoxanthin productivity of 4.88 mg/L/day was achieved in outdoor cultivation. Thus, this study demonstrated the usefulness of Pavlova sp. OPMS 30543 for fucoxanthin production in outdoor cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available within this article or from the corresponding author upon reasonable request. Pavlova pinguis NBRC 102807 and Pavlova lutheri NBRC 102808 can be obtained from the National Biological Resource Center (NBRC).

References

  • Afolayan AF, Bolton JJ, Lategan CA, Smith PJ, Beukes DR (2008) Fucoxanthin, tetraprenylated toluquinone and toluhydroquinone metabolites from Sargassum heterophyllum inhibit the in vitro growth of the malaria parasite Plasmodium falciparum. Z Naturforsch C J Biosci 63:848–852

    Article  CAS  PubMed  Google Scholar 

  • Alkhamis Y, Qin JG (2013) Cultivation of Isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions. Biomed Res Int 2013:983465

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  • Dang TT, Bowyer MC, Van Altena IA, Scarlett CJ (2017) Comparison of chemical profile and antioxidant properties of the brown algae. Int J Food Sci Technol 53:174–181

    Article  CAS  Google Scholar 

  • Dembitsky VM, Maoka T (2007) Allenic and cumulenic lipids. Prog Lipid Res 46:328–375

    Article  CAS  PubMed  Google Scholar 

  • Fariman GA, Shastan SJ, Zahedi MM (2016) Seasonal variation of total lipid, fatty acids, fucoxanthin content, and antioxidant properties of two tropical brown algae (Nizamuddinia zanardinii and Cystoseira indica) from Iran. J Appl Phycol 28:1323–1331

    Article  CAS  Google Scholar 

  • Fernandes T, Martel A, Cordeiro N (2020) Exploring Pavlova pinguis chemical diversity: a potentially novel source of high value compounds. Sci Rep 10:339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gammone MA, d’Orazio N (2015) Anti-obesity activity of the marine carotenoid fucoxanthin. Mar Drugs 13:2196–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Teles Cabanelas Itd I, Wijffels RH, Barbosa MJ (2020) Process optimization of fucoxanthin production with Tisochrysis lutea. Bioresour Technol 315:123894

    Article  CAS  PubMed  Google Scholar 

  • Gayen K, Bhowmick TK, Maity SK (2019) Sustainable Downstream Processing of Microalgae for Industrial Application. CRC Press, Boca Raton

    Book  Google Scholar 

  • Gómez-Loredo A, Benavides J, Rito-Palomares M (2016) Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. J Appl Phycol 28:849–860

    Article  CAS  Google Scholar 

  • Green JC (1980) The fine structure of Pavlova pinguis Green and a preliminary survey of the order Pavlovales (Prymnesiophyceae). Br Phycol J 15:151–191

    Article  Google Scholar 

  • Guihéneuf F, Stengel DB (2013) LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar Drugs 11:4246–4266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guihéneuf F, Mimouni V, Tremblin G, Ulmann L (2015) Light intensity regulates LC-PUFA incorporation into lipids of Pavlova lutheri and the final desaturase and elongase activities involved in their biosynthesis. J Agric Food Chem 63:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Hiller RG, Larkum AWD, Wrench PM (1988) Chlorophyll proteins of the prymnesiophyte Pavlova lutherii (Droop) comb. nov.: identification of the major light-harvesting complex. Biochimica et Biophysica Acta - Bioenergetics 932:223–231

    Article  CAS  Google Scholar 

  • Hosokawa M, Wanezaki S, Miyauchi K, Kurihara H, Kohno H, Kawabata J, Odashima S, Takahashi K (1999) Apoptosis-inducing effect of fucoxanthin on human leukemia cell line HL-60. Food Sci Technol Res 5:243–246

    Article  CAS  Google Scholar 

  • Ikeda K, Kitamura A, Machida H, Watanabe M, Negishi H, Hiraoka J, Nakano T (2003) Effect of Undaria pinnatifida (Wakame) on the development of cerebrovascular diseases in stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 30:44–48

    Article  CAS  PubMed  Google Scholar 

  • Kawee-ai A, Kuntiya A, Kim SM (2013) Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Nat Prod Commun 8:1381–1386

    CAS  PubMed  Google Scholar 

  • Kim SM, Kang SW, Kwon ON, Chung D, Pan CH (2012) Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. J Korean Soc Appl Biol Chem 55:477–483

    Article  CAS  Google Scholar 

  • Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131:3303–3306

    Article  CAS  PubMed  Google Scholar 

  • Lananan F, Jusoh A, Ali N, Lam SS, Endut A (2013) Effect of Conway medium and f/2 medium on the growth of six genera of South China Sea marine microalgae. Bioresour Technol 141:75–82

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Sun H, Zhao W, Cheng KW, Chen F, Liu B (2018) A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Mar Drugs 16:219

    Article  PubMed Central  CAS  Google Scholar 

  • Maeda H, Fukuda S, Izumi H, Saga N (2018) Anti-oxidant and fucoxanthin contents of brown alga Ishimozuku (Sphaerotrichia divaricata) from the West Coast of Aomori Japan. Mar Drugs 16:255

    Article  PubMed Central  CAS  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Miyashita K (2007) Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Agric Food Chem 55:7701–7706

    Article  CAS  PubMed  Google Scholar 

  • Marella TK, Tiwari A (2020) Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresour Technol 307:123245

    Article  CAS  PubMed  Google Scholar 

  • McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM (2018) An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res 29:41–48

    Article  Google Scholar 

  • Meireles LA, Guedes C, Malcata FX (2003) Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol Bioeng 81:50–55

    Article  CAS  PubMed  Google Scholar 

  • Milke LM, Bricelj VM, Parrish CC (2008) Biochemical characterization and nutritional value of three Pavlova spp. in unialgal and mixed diets with Chaetoceros muelleri for postlarval sea scallops Placopecten magellanicus. Aquaculture 276:130–142

    Article  CAS  Google Scholar 

  • Ou L, Cai Y, Jin W, Wang Z, Lu S (2018) Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res 34:182–190

    Article  Google Scholar 

  • Peng J, Yuan JP, Wu CF, Wang JH (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9:1806–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrushkina M, Gusev E, Sorokin B, Zotko N, Mamaeva A, Filimonova A, Kulikovskiy M, Maltsev Y, Yampolsky I, Guglya E, Vinokurov V, Namsaraev Z, Kuzmin D (2017) Fucoxanthin production by heterokont microalgae. Algal Res 24:387–393

    Article  Google Scholar 

  • Shiratori K, Ohgami K, Ilieva I, Jin XH, Koyama Y, Miyashita K, Yoshida K, Kase S, Ohno S (2005) Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp Eye Res 81:422–428

    Article  CAS  PubMed  Google Scholar 

  • Sivagnanam SP, Yin S, Choi JH, Park YB, Woo HC, Chun BS (2015) Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Mar Drugs 13:3422–3442

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Matsubara K, Akagi R, Mori M, Hirata T (2006) Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. J Agric Food Chem 54:9805–9810

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Wang X, LiuJ, (2019) Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin. Algal Res 41:101545

    Article  Google Scholar 

  • Susanto E, Fahmi AS, Abe M, Hosokawa M, Miyashita K (2016) Lipids, fatty acids, and fucoxanthin content from temperate and tropical brown seaweeds. Aquat Procedia 7:66–75

    Article  Google Scholar 

  • Tokushima H, Inoue-Kashino N, Nakazato Y, Masuda A, Ifuku K, Kashino Y (2016) Advantageous characteristics of the diatom Chaetoceros gracilis as a sustainable biofuel producer. Biotechnol Biofuels 9:235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walne PR (1970) Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilis. Fish Invest 26:1–62

    Google Scholar 

  • Wang S, Verma SK, Said IH, Thomsen L, Ullrich MS, Kuhnert N (2018) Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microb Cell Fact 17:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia S, Gao B, Fu J, Xiong J, Zhang C (2018) Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. J Biosci Bioeng 126:723–729

    Article  CAS  PubMed  Google Scholar 

  • Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs 11:2667–2681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao X, Si X, Yuan Z, Xu X, Li G (2012) Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography. J Sep Sci 35:2313–2317

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Wei D (2020) Improving fucoxanthin production in mixotrophic culture of marine diatom Phaeodactylum tricornutum by LED light shift and nitrogen supplementation. Front Bioeng Biotechnol 8:820

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Takeshi Fujiwara, Dr. Takafumi Watanabe, and Ms. Yuko Koizumi for their technical assistance. We would like to thank NBRC for supplying Pavlova pinguis NBRC 102807 and Pavlova lutheri NBRC 102808.

Author information

Authors and Affiliations

Authors

Contributions

A. Kanamoto designed the study, conducted the experiments, and drafted the manuscript. Y. K., E. Y., T. H., and A. Kondo commented on the study, helped interpret results, and revised the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Tomohisa Hasunuma.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Kanamoto was a CEO of OP Bio Factory at the time this study was conducted. A. Kanamoto participated in the experiments as a representative of OP Bio Factory. The corresponding author has full access to all the data in the study and is completely responsible for the data and its accuracy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanamoto, A., Kato, Y., Yoshida, E. et al. Development of a Method for Fucoxanthin Production Using the Haptophyte Marine Microalga Pavlova sp. OPMS 30543. Mar Biotechnol 23, 331–341 (2021). https://doi.org/10.1007/s10126-021-10028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10028-5

Keywords

Navigation