Skip to main content
Log in

Biotransformation of (E)-2-Methyl-3-Phenylacrylaldehyde Using Mycelia of Penicillium citrinum CBMAI 1186, Both Free and Immobilized on Chitosan

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

This study applied the use of marine-derived fungus Penicillium citrinum CBMAI 1186 in the stereoselective reduction of the C=C double bond of the prochiral (E)-2-methyl-3-phenylacrylaldehyde 1. The fungus immobilized on chitosan, obtained by multistep ultrasound-assisted deacetylation process (Ch-USAD), produced the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 49%, 40% ee) isomer and (±)-2-methyl-3-phenylacrilic acid 4 (c = 35%); in contrast, immobilized mycelia on commercial chitosan (Ch-C) yielded the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 48%, 10% ee) and (±)-2-methyl-3-phenylpropanal 1a (c = 41%). The reaction using free mycelia gave a 40% yield of (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 with 10% ee. These results showed that the crystallinity form and molecular weight of chitosan (Ch-C or Ch-USAD) used to immobilized mycelia of P. citrinum CBMAI 1186 influenced in the biotransformation of (E)-2-methyl-3-phenylacrylaldehyde 1. Therefore, marine-derived fungus P. citrinum CBMAI 1186 immobilized on chitosan can be a potential alternative in the studies of hydrogenation of the α,β-unsaturated carbon-carbon (α,β-C=C) double bond.

Marine-derived fungus Penicillium citrinum CBMAI 1186 immobilized on chitosan in the stereoselective reduction of the C=C double bond of the prochiral (E)-2-methyl-3-phenylacrylaldehyde

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aljawish A, Chevalot I, Jasniewski J, Scher J, Muniglia L (2015) Enzymatic synthesis of chitosan derivatives and their potential applications. J Mol Catal B Enzym 112:25–39

    Article  CAS  Google Scholar 

  • Biró E, Németh ÁS, Sisak C, Feczkó T, Gyenis J (2008) Preparation of chitosan particles suitable for enzyme immobilization. J Biochem Biophys Methods 70:1240–1246

    Article  CAS  Google Scholar 

  • Birolli WG, Ferreira IM, Alvarenga N, Santos DDA, De Matos IL, Comasseto JV, Porto ALM (2015) Biocatalysis and biotransformation in Brazil: an overview. Biotechnol Adv 33:481–510

    Article  CAS  Google Scholar 

  • Birolli WG, Ferrreira IM, Jimenez DEQ, Silva BNM, Silva BV, Pinto AC, Porto ALM (2017) First asymmetric reduction ofi by marine-derived fungi. J Braz Chem Soc 28:1023–1029

  • Bobal P, Bobalova J (2013) An efficient chemoselective reduction of furan series unsaturated dinitriles. Molecules. 18:2212–2221

    Article  CAS  Google Scholar 

  • Brenna E, Gatti FG, Monti D, Parmeggiani F, Serra S (2012) Stereochemical outcome of the biocatalysed reduction of activated tetrasubstituted olefins by old yellow enzymes. Adv Synth Catal 354:105–112

    Article  CAS  Google Scholar 

  • De Paula BRS, Zampieri D, Rodrigues JAR, Moran PJS (2017a) Biotransformation of 3-azidomethyl-4-phenyl-3-buten-2-one and analogs by Saccharomyces cerevisiae: new evidence for an SN2′ mechanism. Tetrahedron Asymmetry 28:545–549

    Article  CAS  Google Scholar 

  • De Paula BRS, Zampieri DS, Nasário FD, Rodrigues JAR, Moran PJS (2017b) Regioselectivity control of enone eeduction dediated by aqueous baker’s yeast with addition of ionic liquid [bmim(PF6)]. Biocatal Agric Biotechnol 12:166–171

    Article  Google Scholar 

  • Durchschein K, Wallner S, Macheroux P, Zangger K, Fabian W, Faber K (2012) Unusual C=C bond isomerization of an α,β-unsaturated γ-butyrolactone catalysed by flavoproteins from the old yellow enzyme family. ChemBioChem. 13:2346–2351

    Article  CAS  Google Scholar 

  • Ferreira IM, Nishimura RHV, Souza ABDA, Clososki GC, Yoshioka SA, Porto ALM (2014) Highly enantioselective acylation of chlorohydrins using Amano AK lipase from P. fluorescens immobilized on silk fibroin–alginate spheres. Tetrahedron Lett 55:5062–5065

    Article  CAS  Google Scholar 

  • Ferreira IM, De Vasconcellos SP, Da Cruz JB, Comasseto JV, Porto ALM, Rocha LC (2015a) Hydrogenation of bis-alpha,beta-unsaturated enones mediated by filamentous fungi. Biocatal Agric Biotechnol 4:144–149

    Article  Google Scholar 

  • Ferreira IM, Meira EB, Rosset IG, Porto ALM (2015b) Chemoselective biohydrogenation of α,β- and α,β,γ,δ-unsaturated ketones by the marine-derived fungus Penicillium citrinum CBMAI 1186 in a biphasic system. J Mol Catal B Enzym 115:59–65

    Article  CAS  Google Scholar 

  • Ferreira IM, Rocha LR, Yoshioka SA, Nitschke M, Jeller AH, Pizzuti L, Seleghim MHR, Porto ALM (2014) Chemoselective reduction of chalcones by whole hyphae of marine fungus Penicillium citrinum CBMAI 1186, free and immobilized on biopolymers. Biocatal Agric Biotechnol 3:358–364

  • Fiamingo A, Campana-Filho SP (2016) Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes. Carbohydr Polym 143:155–163

    Article  CAS  Google Scholar 

  • Fiamingo A, Delezuk JADM, Trombotto S, David L, Campana-Filho SP (2016) Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of beta-chitin. Ultrason. Sonochem 32:79–85

    Article  CAS  Google Scholar 

  • Focher B, Beltrame BL, Naggi A, Torri G (1990) Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydr Polym 12:405–418

  • Fronza G, Fuganti C, Serra S (2009) Stereochemical course of baker's yeast mediated reduction of the tri- and tetrasubstituted double bonds of substituted cinnamaldehydes. Eur J Org Chem 2009:6160–6171

    Article  CAS  Google Scholar 

  • Garzón-Posse F, Becerra-Figueroa L, Hernández-Arias J, Gamba-Sánchez D (2018) Whole cells as biocatalysts in organic transformations. Molecules 23:1265

  • Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104:1415–1421

    Article  CAS  Google Scholar 

  • Hirai A, Odani H, Nakajima A (1991) Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym Bull 26:87–94

  • Jimenez DEQ, Ferreira IM, Birolli WG, Fonseca LP, Porto ALM (2016) Synthesis and biocatalytic ene-reduction of Knoevenagel condensation compounds by the marine-derived fungus Penicillium citrinum CBMAI 1186. Tetrahedron 72:7317–7322

  • Kaise H, Shimokawa J, Fukuyama T (2014) TMSCN/DBU-mediated facile redox transformation of α,β-unsaturated aldehydes to carboxylic acid derivatives. Org Lett 16:727–729

    Article  CAS  Google Scholar 

  • Kato D, Mitsuda S, Ohta H (2003) Microbial deracemization of alpha-substituted carboxylic acids: substrate specificity and mechanistic investigation. J Org Chem 68:7234–7242

    Article  CAS  Google Scholar 

  • Knaus T, Mutti FG, Humphreys LD, Turner NJ, Scrutton NS (2015) Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral [small alpha]-substituted carboxylic acids from [small alpha]-substituted [small alpha],[small beta]-unsaturated aldehydes. Org Biomol Chem 13:223–233

    Article  CAS  Google Scholar 

  • Logesh AR, Thillaimaharani KA, Sharmila K, Kalaiselvam M, Raffi SM (2012) Production of chitosan from endolichenic fungi isolated from mangrove environment and its antagonistic activity. Asian Pac J Trop Biomed 2:140–143

    Article  CAS  Google Scholar 

  • Majeric M, Avdagic A, Hamersak Z, Sunjic V (1995) Short chemoenzymatic synthesis of S-enantiomers of 2 systemic fungicides. Biotechnol Lett 17:1189–1194

    Article  CAS  Google Scholar 

  • Muller A, Hauer B, Rosche B (2006) Enzymatic reduction of the alpha,beta-unsaturated carbon bond in citral. J Mol Catal B Enzym 38:126–130

    Article  CAS  Google Scholar 

  • Paula BRS, Zampieri D, Rodrigues JAR, Moran PJS (2016) Bioreduction of α-acetoxymethyl enones: proposal for an SN2′ mechanism catalyzed by enereductase. Adv Synth Catal 358:3555–3571

    Article  CAS  Google Scholar 

  • Porto ALM, Cassiola F, Dias SLP, Joekes I, Gushikem Y, Rodrigues JAR, Moran PJS, Marsaioli AJ (2002) Aspergillus terreus CCT 3320 immobilized on chrysotile or cellulose/TiO2 for sulfide oxidation. J Mol Catal B Enzym. 19:327–334

  • Ramos BLR, Montenegro STC, De Oliveira KÁR, De Miranda PPA, De Lima MAB, Estevez PMM, Saraiva CMP, De Oliveira FL, Magnani M, De Souza EL (2018) Chitosan produced from Mucorales fungi using agroindustrial by-products and its efficacy to inhibit Colletotrichum species. Int J Biol Macromol 108:635–641

  • Ranu BC, Samanta S (2002) Use of indium hydride (Cl2InH) for chemoselective reduction of the carbon-carbon double bond in conjugated alkenes. Tetrahedron Lett 43:7405–7407

    Article  CAS  Google Scholar 

  • Ranu B, Samanta S (2003) Remarkably selective reduction of the alpha,beta-carbon-carbon double bond in highly activated alpha,beta,gamma,delta-unsaturated alkenes by the InCl3-NaBH4 reagent system. J Org Chem 68:7130–7132

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Rinaudo M, Milas M, Dung PL (1993) Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int J Biol Macromol. 15:281–285

    Article  CAS  Google Scholar 

  • Rocha LC, Souza AL, Filho UPR, Filho SPC, Sette LD, Porto ALM (2012) Immobilization of marine fungi on silica gel, silica xerogel and chitosan for biocatalytic reduction of ketones. J Mol Catal B Enzym 84:160–165

  • Szostak M, Spain M, Procter DJ (2011) Electron transfer reduction of unactivated esters using SmI2-H2O. Chem Commun 47:10254–10256

    Article  CAS  Google Scholar 

  • Taqieddin E, Amiji M (2004) Enzyme immobilization in novel alginate–chitosan core-shell microcapsules. Biomaterials 25:1937–1945

    Article  CAS  Google Scholar 

  • Toogood HS, Scrutton NS (2018) Discovery, characterization, engineering, and applications of ene-eeductases for industrial biocatalysis. ACS Catal 8:3532–3549

    Article  CAS  Google Scholar 

  • Ueberbacher BJ, Griengl H, Weber H (2008) Chemo-enzymatic synthesis of new ferrocenyl-oxazolidinones and their application as chiral auxiliaries. Tetrahedron Asymmetry 19:838–846

    Article  CAS  Google Scholar 

  • Voběrková S, Solčány V, Vršanská M, Adam V (2018) Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere 202:694–707

    Article  CAS  Google Scholar 

  • Waller J, Toogood HS, Karuppiah V, Rattray NJW, Mansell DJ, Leys D, Gardiner JM, Fryszkowska A, Ahmed ST, Bandichhor R, Reddy GP, Scrutton NS (2017) Structural insights into the ene-reductase synthesis of profens. Org Biomol Chem 15:4440–4448

    Article  CAS  Google Scholar 

  • Winkler C, Tasnadi G, Clay D, Hall M, Faber K (2012) Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. J Biotechnol 162:381–389

    Article  CAS  Google Scholar 

  • Yanto Y, Winkler C, Lohr S, Hall M, Faber K, Bommarius A (2011) Asymmetric bioreduction of alkenes using ene-reductases YersER and KYE1 and effects of organic solvents. Org Lett 13:2540–2543

    Article  CAS  Google Scholar 

Download references

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. N0. 302528/2017-2) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Proc. N0. 2014/18257-0 and Proc. N0. 2016/20155-7) provided financial support. The Center for Research on Science and Technology of BioResources of the University of São Paulo also provided financial and structural support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irlon M. Ferreira or André L. M. Porto.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1.18 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, I.M., Fiamingo, A., Campana-Filho, S.P. et al. Biotransformation of (E)-2-Methyl-3-Phenylacrylaldehyde Using Mycelia of Penicillium citrinum CBMAI 1186, Both Free and Immobilized on Chitosan. Mar Biotechnol 22, 348–356 (2020). https://doi.org/10.1007/s10126-020-09954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-09954-7

Keywords

Navigation