Skip to main content
Log in

Transcriptomic Analysis Revealed the Regulatory Mechanisms of Oocyte Maturation and Hydration in Orange-Spotted Grouper (Epinephelus coioides)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Oocyte maturation and hydration are regulated by a complex interplay of various hormones and local factors. We have investigated the morphological changes of follicles and serum steroid levels during the HCG (human choionic gonadotophin)-induced oocyte maturation in the orange-spotted grouper. For the first time, a large-scale transcriptomic analysis of follicles during the maturation has been conducted in a fish species which produce pelagic oocytes. Eight cDNA libraries of follicle samples, from full-grown immature follicles to mature follicles, were constructed. A total of 402,530,284 high-quality clean reads were obtained after filtering, 79.66% of which perfectly mapped to the orange-spotted grouper genome. Real-time PCR results of 12 representative genes related to oocyte maturation and hydration verified the reliability of the RNA-seq data. A large number of genes related to oocyte maturation and hydration were identified in the transcriptome dataset. And the transcriptomic analysis revealed the dynamic changes of the steroid synthesis pathway and the pathway of hydration during oocyte maturation. The present study will facilitate future study on the oocyte maturation and hydration in the orange-spotted grouper and other marine pelagic egg spawner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Raw sequencing data is available through the NCBI Sequence Read Archive under BioProject Accession number PRJNA517188.

References

  • Carnevali O, Cionna C, Tosti L, Lubzens E, Maradonna F (2006) Role of cathepsins in ovarian follicle growth and maturation. Gen Comp Endocrinol 146:195–203

    Article  CAS  PubMed  Google Scholar 

  • Carnevali O, Cionna C, Tosti L, Cerda J, Gioacchini G (2008) Changes in cathepsin gene expression and relative enzymatic activity during gilthead sea bream oogenesis. Mol Reprod Dev 75:97–104

    Article  CAS  PubMed  Google Scholar 

  • Cerdà J (2009) Molecular pathways during marine fish egg hydration: the role of aquaporins. J Fish Biol 75:2175–2196

    Article  CAS  PubMed  Google Scholar 

  • Cerdá J, Selman K, Wallace RA (1996) Observations on oocyte maturation and hydration in vitro in the black sea bass, Centropristis striata (Serranidae). Aquat Living Resour 9:325–335

    Article  Google Scholar 

  • Chapman RW, Reading BJ, Sullivan CV (2014) Ovary transcriptome profiling via artificial intelligence reveals a transcriptomic fingerprint predicting egg quality in striped bass, Morone saxatilis. PLoS One 9:1–10

    Google Scholar 

  • Chen H, Zhang Y, Li S, Lin M, Shi Y, Sang Q, Liu M, Zhang H, Lu D, Meng Z, Liu X, Lin H (2011) Molecular cloning, characterization and expression profiles of three estrogen receptors in protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 172:371–381

    Article  CAS  PubMed  Google Scholar 

  • Clelland E, Peng C (2009) Endocrine/paracrine control of zebrafish ovarian development. Mol Cell Endocrinol 312:42–52

    Article  CAS  PubMed  Google Scholar 

  • Fabra M, Cerdà J (2004) Ovarian cysteine proteinases in the teleost Fundulus heteroclitus: molecular cloning and gene expression during vitellogenesis and oocyte maturation. Mol Reprod Dev 67:282–294

    Article  CAS  PubMed  Google Scholar 

  • Fabra M, Raldúa D, Power DM, Deen PMT, Cerdà J (2005) Marine fish egg hydration is aquaporin-mediated. Science 307:545–545

    Article  CAS  PubMed  Google Scholar 

  • Fabra M, Raldúa D, Bozzo MG, Deen PMT, Lubzens E, Cerdà J (2006) Yolk proteolysis and aquaporin-1o play essential roles to regulate fish oocyte hydration during meiosis resumption. Dev Biol 295:250–262

    Article  CAS  PubMed  Google Scholar 

  • Haas M, Forbush B (1998) The Na-K-cl cotransporters. J Bioenerg Biomembr 30:161–172

    Article  CAS  PubMed  Google Scholar 

  • Hanna RN, Zhu Y (2011) Controls of meiotic signaling by membrane or nuclear progestin receptor in zebrafish follicle-enclosed oocytes. Mol Cell Endocrinol 337:80–88

    Article  CAS  PubMed  Google Scholar 

  • Holliday LS, Lu M, Lee BS, Nelson RD, Solivan S, Zhang L, Gluck SL (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275:32331–32337

    Article  CAS  PubMed  Google Scholar 

  • Jalabert B (1976) In vitro oocyte maturation and ovulaion in rainbow trout (Salmo gairdneri), northern pike (Esox lucius), and goldfish (Carassius auratus). J Fish Res Board Can 33:974–988

    Article  CAS  Google Scholar 

  • Jia Y, Nan P, Zhang W, Wang F, Zhang R, Liang T, Ji X, Du Q, Chang Z (2018) Transcriptome analysis of three critical periods of ovarian development in Yellow River carp (Cyprinus carpio). Theriogenology 105:15–26

    Article  CAS  PubMed  Google Scholar 

  • Kaji K, Kudo A (2002) The mechanism of sperm– oocyte fusion in mammals. Reproduction 127:423–429

    Article  CAS  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King VW, Berlinsky DL, Sullivan CV (1995) Involvement of gonadal steroids in final oocyte maturation of white perch (Morone americana) and white bass (M. chrysops): in vivo and in vitro studies. Fish Physiol Biochem 14:489–500

    Article  CAS  PubMed  Google Scholar 

  • LaFleur GJ, Thomas P (1991) Evidence for a role of Na+,K+-ATPase in the hydration of Atlantic croaker and spotted seatrout oocytes during final maturation. J Exp Zool 258:126–136

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JZ, Cheng CHK (2018) Evolution of gonadotropin signaling on gonad development: insights from gene knockout studies in zebrafish. Biol Reprod 99:686–694

    PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lubzens E, Young G, Bobe J, Cerdà J (2010) Oogenesis in teleosts: how fish eggs are formed. Gen Comp Endocrinol 165:367–389

    Article  CAS  PubMed  Google Scholar 

  • Matsubara T, Nagae M, Ohkubo N, Andoh T, Sawaguchi S, Hiramatsu N, Sullivan CV, Hara A (2003) Multiple vitellogenins and their unique roles in marine teleosts. Fish Physiol Biochem 28:295–299

    Article  CAS  Google Scholar 

  • Maugars G, Dufour S (2015) Demonstration of the coexistence of duplicated LH receptors in teleosts, and their origin in ancestral actinopterygians. PLoS One 10:1–29

    Article  CAS  Google Scholar 

  • Nagahama Y, Yoshikuni M (2008) Regulation of oocyte maturation in fish. Develop Growth Differ 50:S195–S219

    Article  CAS  Google Scholar 

  • Pang Y, Thomas P (2010) Role of G protein-coupled estrogen receptor 1, GPER, in inhibition of oocyte maturation by endogenous estrogens in zebrafish. Dev Biol 342:194–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patiño R, Thomas P (1990a) Characterization of membrane receptor activity for 17α,20β,21-trihydroxy-4-pregnen-3-one in ovaries of spotted seatrout (Cynoscion nebulosus). Gen Comp Endocrinol 78:204–217

    Article  PubMed  Google Scholar 

  • Patiño R, Thomas P (1990b) Effects of gonadotropin on ovarian intrafollicular processes during the development of oocyte maturational competence in a teleost, the Atlantic croaker: evidence for two distinct stages of gonadotropin control of final oocyte maturation. Biol Reprod 43:818–827

    Article  PubMed  Google Scholar 

  • Peng C, Xiao L, Chen H, Han Y, Huang M, Zhao M, Li S, Liu Y, Yang Y, Zhang H, Zhang Y, Lin H (2018) Cloning, expression and functional characterization of a novel luteinizing hormone receptor in the orange-spotted grouper, Epinephelus coioides. Gen Comp Endocrinol 267:90–97

    Article  CAS  PubMed  Google Scholar 

  • Picha ME, Shi B, Thomas P (2012) Dual role of IGF-II in oocyte maturation in southern flounder Paralichthys lethostigma: up-regulation of mPRα and resumption of meiosis. Gen Comp Endocrinol 177:220–230

    Article  CAS  PubMed  Google Scholar 

  • Raldúa D, Fabra M, Bozzo MG, Weber E, Cerdà J (2005) Cathepsin B-mediated yolk protein degradation during killifish oocyte maturation is blocked by an H+-ATPase inhibitor: effects on the hydration mechanism. Am J Physiol Regul Integr Comp Physiol 290:R456–R466

    Article  CAS  PubMed  Google Scholar 

  • Ravi P, Jiang J, Liew WC, Orbán L (2014) Small-scale transcriptomics reveals differences among gonadal stages in Asian seabass (Lates calcarifer). Reprod Biol Endocrinol 12:1–14

    Article  CAS  Google Scholar 

  • Rocha A, Zanuy S, Carrillo M, Gómez A (2009) Seasonal changes in gonadal expression of gonadotropin receptors, steroidogenic acute regulatory protein and steroidogenic enzymes in the European sea bass. Gen Comp Endocrinol 162:265–275

    Article  CAS  PubMed  Google Scholar 

  • Sakai N, Tanaka M, Takahashi M, Adachi S, Nagahama Y (1993) Isolation and expression of rainbow trout (Oncorhynchus mykiss) ovarian cDNA encoding 3β-hydroxysteroid dehydrogenase/Δ5-4-isomerase. Fish Physiol Biochem 11:273–279

    Article  CAS  PubMed  Google Scholar 

  • Selman K, Petrino TR, Wallace RA (1994) Experimental conditions for oocyte maturation in the zebrafish, Brachydanio rerio. J Exp Zool 269:538–550

    Article  CAS  Google Scholar 

  • Selman K, Wallace RA, Cerdà J (2001) Bafilomycin A1 inhibits proteolytic cleavage and hydration but not yolk crystal disassembly or meiosis during maturation of sea bass oocytes. J Exp Zool 290:265–278

    Article  CAS  PubMed  Google Scholar 

  • Sullivan CV, Yilmaz O (2018) Vitellogenesis and yolk proteins, fish. In: Skinner MK (ed) Encyclopedia of reproduction, 2nd edn. Elsevier

  • Tang H, Liu Y, Li J, Yin Y, Li G, Chen Y, Li S, Zhang Y, Lin H, Liu X, Cheng HK (2016) Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish. Sci Rep 6:28545

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarumi W, Itoh MT, Suzuki N (2014) Effects of 5α-dihydrotestosterone and 17β-estradiol on the mouse ovarian follicle development and oocyte maturation. PLoS One 9:e99423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tingaud-Sequeira A, Chauvigné F, Lozano J, Agulleiro MJ, Asensio E, Cerdà J (2009) New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis. BMC Genomics 10:434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokumoto T, Tokumoto M, Oshima T, Shimizuguchi K, Fukuda T, Sugita E, Suzuki M, Sakae Y, Yi A, Nakayama R, Roy SR, Rahman SM, Pang Y, Dong J, Thomas P (2012) Characterization of multiple membrane progestin receptor (mPR) subtypes from the goldfish ovary and their roles in the induction of oocyte maturation. Gen Comp Endocrinol 177:168–176

    Article  CAS  PubMed  Google Scholar 

  • Trant JM, Thomas P (1989) Isolation of a novel maturation-inducing steroid produced in vitro by ovaries of Atlantic croaker. Gen Comp Endocrinol 75:397–404

    Article  CAS  PubMed  Google Scholar 

  • Trant JM, Thomas P, Shackleton C (1986) Identification of 17α, 20β, 21-trihydroxy-4-pregnen-3-one as the major ovarian steroid produced by the teleost Micropogonias undulatus during final oocyte maturation. Steroids 47:89–99

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tubbs C, Pace M, Thomas P (2010) Expression and gonadotropin regulation of membrane progestin receptor alpha in Atlantic croaker (Micropogonias undulatus) gonads: role in gamete maturation. Gen Comp Endocrinol 165:144–154

    Article  CAS  PubMed  Google Scholar 

  • Viana IKS, Gonçalves LAB, Ferreira MAP, Mendes YA, Rocha RM (2018) Oocyte growth, follicular complex formation and extracellular-matrix remodeling in ovarian maturation of the imperial zebra pleco fish Hypancistrus zebra. Sci Rep 8:13760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu Y, Peng C, Wang X, Xiao L, Wang D, Tang Z, Li S, Zhang H, Zhang Y, Lin H (2017a) Molecular regulation of sex change induced by methyltestosterone -feeding and methyltestosterone -feeding withdrawal in the protogynous orange-spotted grouper. Biol Reprod 97:324–333

    Article  PubMed  Google Scholar 

  • Wang Q, Qi X, Tang H, Guo Y, Li S, Li G, Yang X, Zhang H, Liu X, Lin H (2017b) Molecular identification of StAR and 3βHSD1 and characterization in response to GnIH stimulation in protogynous hermaphroditic grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol 206:26–34

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Du F, Li Y, Nie Z, Xu P (2016) Integrated application of transcriptomics and metabolomics yields insights into population-asynchronous ovary development in Coilia nasus. Sci Rep 6:31835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita M, Kajiura H, Tanaka T, Onoe S, Nagahama Y (1995) Molecular mechanisms of the activation of maturation-promoting factor during goldfish oocyte maturation. Dev Biol 168:62–75

    Article  CAS  PubMed  Google Scholar 

  • Zapater C, Chauvigné F, Norberg B, Finn RN, Cerdà J (2011) Dual neofunctionalization of a rapidly evolving aquaporin-1 paralog resulted in constrained and relaxed traits controlling channel function during meiosis resumption in teleosts. Mol Biol Evol 28:3151–3169

    Article  CAS  PubMed  Google Scholar 

  • Zapater C, Chauvigné F, Tingaud-Sequeira A, Finn RN, Cerdà J (2013) Primary oocyte transcriptional activation of aqp1ab by the nuclear progestin receptor determines the pelagic egg phenotype of marine teleosts. Dev Biol 377:345–362

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Rice CD, Pang Y, Pace M, Thomas P (2003) Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci U S A 100:2231–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Guangdong Daya Bay Fishery Development Center (Huizhou, Guangdong, China) for providing mature female orange-spotted groupers for this study, and Mr. Zeshu Yu for his assistance in collecting samples.

Funding

This research was supported by the National Natural Science Foundation of China (No. 31672631, No. 31572596), and Guangzhou Science and Technology Program (201804020013) and the open fund of Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals (KFKT2019ZD07).

Author information

Authors and Affiliations

Authors

Contributions

HRL, SSL, and YZ conceived and designed the study; LT performed the experiments and bioinformatics analysis; JXC, ZFY, LT, MZ, and SSL worked for fish breeding and sample collecting. LT and SSL wrote the paper. All authors read the manuscript and approved the final version.

Corresponding authors

Correspondence to Shuisheng Li or Yong Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2272 kb)

ESM2

(XLSX 22 kb)

ESM3

(XLSX 3615 kb)

ESM4

(XLSX 130 kb)

ESM5

(XLSX 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Chen, J., Ye, Z. et al. Transcriptomic Analysis Revealed the Regulatory Mechanisms of Oocyte Maturation and Hydration in Orange-Spotted Grouper (Epinephelus coioides). Mar Biotechnol 21, 537–549 (2019). https://doi.org/10.1007/s10126-019-09902-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-019-09902-0

Keywords

Navigation