Marine Biotechnology

, Volume 21, Issue 3, pp 430–439 | Cite as

Hydrogenation of Halogenated 2′-Hydroxychalcones by Mycelia of Marine-Derived Fungus Penicillium raistrickii

  • Iara Lisboa de Matos
  • Marcia Nitschke
  • André Luiz Meleiro PortoEmail author
Original Article


This study describes the chemoselective hydrogenation reaction of halogenated 2′-hydroxychalcones by the marine-derived fungus Penicillium raistrickii CBMAI 931. Initially, 2′-hydroxychalcone was utilized as a model for the selection of the appropriate conditions to perform the biotransformation reactions. The best results were obtained using mycelia and filtered culture broth, and this condition was chosen for the biotransformation reaction of 2′-hydroxychalcones substituted with methoxy and halogen groups. Experiments performed with 2′-hydroxychalcones dissolved in 600 μL-DMSO were more effective than those performed using 300 μL-DMSO, once solubility of the compounds influenced conversion rate in the liquid medium. The halogenated 2′-hydroxy-dihydrochalcones were obtained in good conversions (78–99%) and moderate isolated yields (31–65%). All biotransformation reactions using the marine-derived fungus P. raistrickii CBMAI 931 showed regioselective and chemoselective control for the formation of 2′-hydroxy-dihydrochalcones.


Biotransformation Marine-derived fungus Chemoselectivity Biohydrogenation 2′-hydroxychalcones Penicillium raistrickii 



The authors would also like to acknowledge Prof. R.G.S. Berlinck (Instituto de Química de São Carlos – USP) for providing the marine fungal strains.

Funding Information

The authors would like to acknowledge the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP process no. 2013/21642-0) for the financial support provided to this research. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Iara Lisboa de Matos is indebt to CAPES for the provision of the scholarship (CAPES process no 1313652).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10126_2019_9893_MOESM1_ESM.doc (7.6 mb)
ESM 1 (DOC 7800 kb)


  1. Ahmed N, van Lier JE (2006) Pd-C/ammonium formate: a selective catalyst for the hydrogenation of chalcones to dihydrochalcones. J Chem Res 40:584–585CrossRefGoogle Scholar
  2. Alvarenga N, Birolli WG, Seleghim MHR, Porto ALM (2014) Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense. Chemosphere 117:47–52CrossRefPubMedGoogle Scholar
  3. Bist G, Pun NT, Magar TBT, Shrestha A, Oh HJ, Khakurel A, Park PH, Lee ES (2017) Inhibition of LPS-stimulated ROS production by fluorinated and hydroxylated chalcones in RAW 264.7 macrophages with structure-activity relationship study. Bioorg Med Chem Lett 27:1205–1209CrossRefPubMedGoogle Scholar
  4. Burmaoglu S, Algul O, Anıl DA, Gobek A, Duran GG, Ersan RH, Duran N (2016) Synthesis and anti-proliferative activity of fluoro-substituted chalcones. Bioorg Med Chem Lett 26:3172–3176CrossRefPubMedGoogle Scholar
  5. Cabrera M, Lavaggi ML, Croce F, Celano L, Thomson L, Fernández M, Pintos C, Raymondo S, Bollati M, Monge A, Ceráin AL, Piro OE, Cerecetto H, González M (2010) Identification of chalcones as in vivo liver monofunctional phase II enzymes inducers. Bioorg Med Chem 18:5391–5399CrossRefPubMedGoogle Scholar
  6. Chen SJ, Lu GP, Cai C (2015) A base-controlled chemoselective transfer hydrogenation of α,β-unsaturated ketones catalyzed by [IrCp*Cl2]2 with 2-propanol. RSC Adv 5:13208–13211CrossRefGoogle Scholar
  7. Chu HW, Wu HT, Lee YJ (2004) Regioselective hydroxylation of 2-hydroxychalcones by dimethyldioxirane towards polymethoxylated flavonoids. Tetrahedron 60:2647–2655CrossRefGoogle Scholar
  8. Corrêa MJC, Nunes FM, Bitencourt HR, Borges FC, Guilhon GMSP, Arruda MSP, Marinho AMR, Santos AS, Alves CN, Brasil DSB, Santos LS (2011) Biotransformation of chalcones by the endophytic fungus Aspergillus flavus isolated from Paspalum maritimum Trin. J Braz Chem Soc 22:1333–1338CrossRefGoogle Scholar
  9. Faber K (2011) Biotransformation in organic chemistry, 6th edn. Springer, GrazCrossRefGoogle Scholar
  10. Ferreira IM, Rocha LC, Yoshioka SA, Nitschke M, Jeller AH, Pizzuti L, Seleghim MHR, Porto ALM (2014) Chemoselective reduction of chalcones by whole hyphae of marine fungus Penicillium citrinum CBMAI 1186, free and immobilized on biopolymers. Biocatal Agric Biotechnol 3:358–364CrossRefGoogle Scholar
  11. Ganji S, Mutyala S, Neeli CKP, Rao KSR, Burri DR (2013) Selective hydrogenation of the C=C bond of α,β-unsaturated carbonyl compounds over PdNPs-SBA-15 in a water medium. RSC Adv 3:11533–11538CrossRefGoogle Scholar
  12. Hansch C (1969) A quantitative approach to biochemical structure-activity relationships. Acc Chem Res 2:232–239CrossRefGoogle Scholar
  13. Hsieh CT, Hsieh TJ, El-Shazly M, Chuang DW, Tsai YH, Yen CT, Wu SF, Wu YC, Chang FR (2012) Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorg Med Chem Lett 22:3912–3915CrossRefPubMedGoogle Scholar
  14. Jana PP, Sarma R, Baruah JB (2008) Reduction of α,β-unsaturated carbonyl compounds by palladium(II) and nickel(II) complexes having nitrogen-containing ligands. J Mol Catal A Chem 289:57–60CrossRefGoogle Scholar
  15. Janeczko T, Gładkowski W, Kostrzewa-Susłow E (2013) Microbial transformations of chalcones to produce food sweetener derivatives. J Mol Catal B Enzym 98:55–61CrossRefGoogle Scholar
  16. Janeczko T, Dymarska M, Siepka M, Gniłka R, Lésniak A, Popłonski J, Kostrzewa-Susłow E (2014) Enantioselective reduction of flavanone and oxidation of cis-and trans-flavan-4-ol by selected yeast cultures. J Mol Catal B Enzym 109:47–52CrossRefGoogle Scholar
  17. Knaus T, Toogood HS, Scrutton NS (2016) Ene-reductases and their applications. In: Patel RN (ed) Green chemistry. Wiley, New York, pp 8–12Google Scholar
  18. Li W, Wu XF (2015) Ruthenium-catalyzed conjugate hydrogenation of α,β-enones by in situ generated dihydrogen from paraformaldehyde and water. Eur J Org Chem 2015:331–335CrossRefGoogle Scholar
  19. Liang J, Lalonde J, Borup B, Mitchell V, Mundorff E, Trinh N, Kochrekar DA, Cherat RN, Pai GG (2010) Development of a biocatalytic process as an alternative to the (−)-DIP-cl-mediated asymmetric reduction of a key intermediate of Montelukast. Org Process Res Dev 14:193–198Google Scholar
  20. Mannhold R, Cruciani G, Dross K, Rekker R (1998) Multivariate analysis of experimental and computational descriptors of molecular lipophilicity. J Comput Aided Mol Des 12:573–581CrossRefPubMedGoogle Scholar
  21. Siddaiah V, Rao CV, Venkateswarlu S, Subbaraju GV (2006) A concise synthesis of polyhydroxydihydrochalcones and homoisoflavonoids. Tetrahedron 62:841–846CrossRefGoogle Scholar
  22. Silva VD, Stambuk BU, Nascimento MG (2010) Efficient chemoselective biohydrogenation of 1,3-diaryl-2-propen-1-ones catalyzed by Saccharomyces cerevisiae yeasts in biphasic system. J Mol Catal B Enzym 63:157–163CrossRefGoogle Scholar
  23. Stompor M, Potaniec B, Szumny A, Zielinski P, Zołnierczyk AK, Anioł M (2013) Microbial synthesis of dihydrochalcones using Rhodococcus and Gordonia species. J Mol Catal B Enzym 97:283–288CrossRefGoogle Scholar
  24. Stompor M, Kałużny M, Żarowska B (2016) Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives. Appl Microbiol Biotechnol 100:8371–8384CrossRefPubMedGoogle Scholar
  25. Stoyanov EV, Champavier Y, Simon A, Basly JP (2002) Efficient liquid-phase synthesis of 2′-hydroxychalcones. Bioorg Med Chem Lett 12:2685–2687CrossRefPubMedGoogle Scholar
  26. Tomás-Barberán FA, Clifford MN (2000) Flavanones, chalcones and dihydrochalcones – nature, occurrence and dietary burden. J Sci Food Agric 1080:1073–1080CrossRefGoogle Scholar
  27. Toogood HS, Scrutton NS (2014) New developments in “ene”-reductase catalysed biological hydrogenations. Curr Opin Chem Biol 19:107–115CrossRefPubMedGoogle Scholar
  28. Trincone A (2010) Potential biocatalysts originating from sea environments. J Mol Catal B Enzym 66:241–256CrossRefGoogle Scholar
  29. Yong LH, Ahn S, Hwang D, Yoon H, Jo G, Kim YH, KIM SH, Koh D, Lim Y (2013) 1H and 13C NMR spectral assigments of 2′-hydroxychalcones. Magn Res Chem 51:364–370CrossRefGoogle Scholar
  30. Zhang YL, Wang YQ (2014) Enantioselective biomimetic cyclization of 2′-hydroxychalcones to flavanones. Tetrahedron Lett 55:3255–3258CrossRefGoogle Scholar
  31. Zheng X, Jiang H, Xie J, Yin Z, Zhang H (2013) Highly efficient and green synthesis of flavanones and tetrahydroquinolones. Synth Commun 43:1023–1029CrossRefGoogle Scholar
  32. Zheng HX, Xiao ZF, Yao CZ, Li QQ, Ning XS, Kang YB, Tang Y (2015) Transition-metal-free self-hydrogen-transferring allylic isomerization. Org Lett 17:6102–6105CrossRefPubMedGoogle Scholar
  33. Zyszka B, Anioł M, Lipok J (2017) Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness. Microb Cell Factories 16:136–151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Iara Lisboa de Matos
    • 1
  • Marcia Nitschke
    • 2
  • André Luiz Meleiro Porto
    • 1
    Email author
  1. 1.Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Laboratório de Biotecnologia Microbiana, Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations