Rapid Analysis of Effects of Environmental Toxicants on Tumorigenesis and Inflammation Using a Transgenic Zebrafish Model for Liver Cancer

  • Qiqi Yang
  • Lyana Salim
  • Chuan Yan
  • Zhiyuan GongEmail author
Original Article


Liver cancer remains to be a major health concern in the world today. Several major risk factors such as hepatitis viral infection and non-alcoholic steatohepatitis have been well established for causing liver cancer, but the contribution of environmental pollutants to liver inflammation and carcinogenesis remains poorly studied. Here, we aimed at the development of a rapid assay to test selected environmental toxicants for their potential roles in induction of inflammation and stimulation of liver tumorigenesis. By using an established kras oncogene transgenic zebrafish model for liver cancer, we tested a total of eight selected chemicals. First, using LPS (lipopolysaccharides) as a positive control, we confirmed its effects on induction of inflammation and stimulation of liver tumorigenesis as indicated by increases of neutrophils and the size of oncogenic livers respectively. Next, we tested two heavy metals (arsenic and chromium) and five organic toxicants (bisphenol A, lindane, N-nitrosodiethylamine, and 3,3′,4,4′,5-pentachlorobiphenyl [PCB126], and 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]). We observed a good correlation on induction of inflammation and their ability for stimulation of liver tumorigenesis. Most toxicants, namely chromium, bisphenol A, lindane, N-nitrosodiethylamine, and PCB126, resulted in increased inflammation and liver tumorigenesis, while arsenic and TCDD had opposite effects. Thus, our study established a screening system to rapidly assess the effects of candidate chemicals on liver tumorigenesis and inflammation.


Toxicant Environmental chemicals Inflammation Cancer Zebrafish HCC (hepatocellular carcinoma) 



This work was funded by Ministry of Education, Singapore (R154000A23112).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10126_2019_9889_MOESM1_ESM.pdf (231 kb)
ESM 1 (PDF 231 kb)


  1. Bissell DM, Gores GJ, Laskin DL, Hoofnagle JH (2001) Drug-induced liver injury: mechanisms and test systems. Hepatology 33:1009–1013CrossRefGoogle Scholar
  2. Boffetta P, Mundt KA, Adami HO, Cole P, Mandel JS (2011) TCDD and cancer: a critical review of epidemiologic studies. Crit Rev Toxicol 41:622–636CrossRefGoogle Scholar
  3. Braunbeck T, Gorge G, Storch V, Nagel R (1990) Hepatic steatosis in zebra fish (Brachydanio rerio) induced by long-term exposure to gamma-hexachlorocyclohexane. Ecotoxicol Environ Saf 19:355–374CrossRefGoogle Scholar
  4. Brion F, Le Page Y, Piccini B, Cardoso O, Tong SK, Chung BC, Kah O (2012) Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PLoS One 7:e36069CrossRefGoogle Scholar
  5. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F, Alesse E (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204CrossRefGoogle Scholar
  6. Chew TW, Liu XJ, Liu L, Spitsbergen JM, Gong Z, Low BC (2014) Crosstalk of Ras and Rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models. Oncogene 33:2717–2727CrossRefGoogle Scholar
  7. Domingues I, Oliveira R, Lourenco J, Grisolia CK, Mendo S, Soares AM (2010) Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults. Comp Biochem Physiol C Toxicol Pharmacol 152:338–345CrossRefGoogle Scholar
  8. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386CrossRefGoogle Scholar
  9. Gorge G, Nagel R (1990) Toxicity of lindane, atrazine, and deltamethrin to early life stages of zebrafish (Brachydanio rerio). Ecotoxicol Environ Saf 20:246–255CrossRefGoogle Scholar
  10. Hall C, Flores MV, Storm T, Crosier K, Crosier P (2007) The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 7:42CrossRefGoogle Scholar
  11. Hens B, Hens L (2017) Persistent threats by persistent pollutants: chemical nature, concerns and future policy regarding PCBs-what are we heading for? Toxics 6.
  12. Huang X, Zhou L, Gong Z (2012) Liver tumor models in transgenic zebrafish: an alternative in vivo approach to study hepatocarcinogenes. Future Oncol 8:21–28CrossRefGoogle Scholar
  13. Karlmark KR, Wasmuth HE, Trautwein C, Tacke F (2008) Chemokine-directed immune cell infiltration in acute and chronic liver disease. Expert Rev Gastroenterol Hepatol 2:233–242CrossRefGoogle Scholar
  14. Kim JW, Park S, Lim CW, Lee K, Kim B (2014) The role of air pollutants in initiating liver disease. Toxicol Res 30:65–70CrossRefGoogle Scholar
  15. Kopec AK, Boverhof DR, Burgoon LD, Ibrahim-Aibo D, Harkema JR, Tashiro C, Chittim B, Zacharewski TR (2008) Comparative toxicogenomic examination of the hepatic effects of PCB126 and TCDD in immature, ovariectomized C57BL/6 mice. Toxicol Sci 102:61–75CrossRefGoogle Scholar
  16. Lam SH, Hlaing MM, Zhang X, Yan C, Duan Z, Zhu L, Ung CY, Mathavan S, Ong CN, Gong Z (2011) Toxicogenomic and phenotypic analyses of bisphenol-A early-life exposure toxicity in zebrafish. PLoS One 6:e28273CrossRefGoogle Scholar
  17. Li Z, Huang X, Zhan H, Zeng Z, Li C, Spitsbergen JM, Meierjohann S, Schartl M, Gong Z (2012) Inducible and repressable oncogene-addicted hepatocellular carcinoma in Tet-on xmrk transgenic zebrafish. J Hepatol 56:419–425CrossRefGoogle Scholar
  18. Li Z, Zheng W, Wang Z, Zeng Z, Zhan H, Li C, Zhou L, Yan C, Spitsbergen JM, Gong Z (2013) A transgenic zebrafish liver tumor model with inducible Myc expression reveals conserved Myc signatures with mammalian liver tumors. Dis Model Mech 6:414–423CrossRefGoogle Scholar
  19. Li Y, Li H, Spitsbergen JM, Gong Z (2017) Males develop faster and more severe hepatocellular carcinoma than females in kras(V12) transgenic zebrafish. Sci Rep 7:41280CrossRefGoogle Scholar
  20. Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M, Pentecost E, Pratap K, Gilmore BA, Divekar S, Dagata RS, Bull JL, Stoica A (2003) Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 144:2425–2436CrossRefGoogle Scholar
  21. Moennikes O, Loeppen S, Buchmann A, Andersson P, Ittrich C, Poellinger L, Schwarz M (2004) A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res 64:4707–4710CrossRefGoogle Scholar
  22. Nayak AS, Lage CR, Kim CH (2007) Effects of low concentrations of arsenic on the innate immune system of the zebrafish (Danio rerio). Toxicol Sci 98:118–124CrossRefGoogle Scholar
  23. Novoa B, Bowman TV, Zon L, Figueras A (2009) LPS response and tolerance in the zebrafish (Danio rerio). Fish Shellfish Immunol 26:326–331CrossRefGoogle Scholar
  24. Osterdahl BG (1983) N-nitrosamines and nitrosatable compounds in rubber nipples and pacifiers. Food Chem Toxicol 21:755–757CrossRefGoogle Scholar
  25. Seachrist DD, Bonk KW, Ho SM, Prins GS, Soto AM, Keri RA (2016) A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 59:167–182CrossRefGoogle Scholar
  26. Seok SH, Baek MW, Lee HY, Kim DJ, Na YR, Noh KJ, Park SH, Lee HK, Lee BH, Park JH (2008) In vivo alternative testing with zebrafish in ecotoxicology. J Vet Sci 9:351–357CrossRefGoogle Scholar
  27. Severi T, Van Malenstein H, Verslype C, Van Pelt JF (2010) Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacol Sin 31:1409–1420CrossRefGoogle Scholar
  28. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164Google Scholar
  29. Tuomisto JT, Pekkanen J, Kiviranta H, Tukiainen E, Vartiainen T, Tuomisto J (2004) Soft-tissue sarcoma and dioxin: a case-control study. Int J Cancer 108:893–900CrossRefGoogle Scholar
  30. Viluksela M, Bager Y, Tuomisto JT, Scheu G, Unkila M, Pohjanvirta R, Flodstrom S, Kosma VM, Maki-Paakkanen J, Vartiainen T, Klimm C, Schramm KW, Warngard L, Tuomisto J (2000) Liver tumor-promoting activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in TCDD-sensitive and TCDD-resistant rat strains. Cancer Res 60:6911–6920Google Scholar
  31. Waalkes MP, Diwan BA, Weghorst CM, Bare RM, Ward JM, Rice JM (1991) Anticarcinogenic effects of cadmium in B6C3F1 mouse liver and lung. Toxicol Appl Pharmacol 110:327–335CrossRefGoogle Scholar
  32. Wang ZY, Hong JY, Huang MT, Reuhl KR, Conney AH, Yang CS (1992) Inhibition of N-nitrosodiethylamine- and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorigenesis in A/J mice by green tea and black tea. Cancer Res 52:1943–1947Google Scholar
  33. Weber R, Gaus C, Tysklind M, Johnston P, Forter M, Hollert H, Heinisch E, Holoubek I, Lloyd-Smith M, Masunaga S, Moccarelli P, Santillo D, Seike N, Symons R, Torres JPM, Verta M, Varbelow G, Vijgen J, Watson A, Costner P, Woelz J, Wycisk P, Zennegg M (2008) Dioxin- and POP-contaminated sites-contemporary and future relevance and challenges. Environ Sci Pollut Res 15:363–393CrossRefGoogle Scholar
  34. Weiss C, Faust D, Schreck I, Ruff A, Farwerck T, Melenberg A, Schneider S, Oesch-Bartlomowicz B, Zatloukalova J, Vondracek J, Oesch F, Dietrich C (2008) TCDD deregulates contact inhibition in rat liver oval cells via Ah receptor, JunD and cyclin A. Oncogene 27:2198–2207CrossRefGoogle Scholar
  35. Willhite CC, Ball GL, Mclellan CJ (2008) Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration. J Toxicol Environ Health B Crit Rev 11:69–146CrossRefGoogle Scholar
  36. Wolff GL, Roberts DW, Morrissey RL, Greenman DL, Allen RR, Campbell WL, Bergman H, Nesnow S, Frith CH (1987) Tumorigenic responses to lindane in mice: potentiation by a dominant mutation. Carcinogenesis 8:1889–1897CrossRefGoogle Scholar
  37. Xu H, Zhang X, Li H, Li C, Huo XJ, Hou LP, Gong Z (2018) Immune response induced by major environmental pollutants through altering neutrophils in zebrafish larvae. Aquat Toxicol 201:99–108CrossRefGoogle Scholar
  38. Yan C, Huo X, Wang S, Feng Y, Gong Z (2015) Stimulation of hepatocarcinogenesis by neutrophils upon induction of oncogenic kras expression in transgenic zebrafish. J Hepatol 63:420–428CrossRefGoogle Scholar
  39. Yan C, Yang Q, Gong Z (2017a) Tumor-associated neutrophils and macrophages promote gender disparity in hepatocellular carcinoma in zebrafish. Cancer Res 77:1395–1407CrossRefGoogle Scholar
  40. Yan C, Yang Q, Huo X, Li H, Zhou L, Gong Z (2017b) Chemical inhibition reveals differential requirements of signaling pathways in kras(V12)- and Myc-induced liver tumors in transgenic zebrafish. Sci Rep 7:45796CrossRefGoogle Scholar
  41. Yan C, Yang Q, Shen HM, Spitsbergen JM, Gong Z (2017c) Chronically high level of tgfb1a induction causes both hepatocellular carcinoma and cholangiocarcinoma via a dominant Erk pathway in zebrafish. Oncotarget 8:77096–77109Google Scholar
  42. Yang Q, Yan C, Yin C, Gong Z (2017) Serotonin activated hepatic stellate cells contribute to sex disparity in hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol 3:484–499CrossRefGoogle Scholar
  43. Yang Q, Yan C, Gong Z (2018) Interaction of hepatic stellate cells with neutrophils and macrophages in the liver following oncogenic kras activation in transgenic zebrafish. Sci Rep 8:8495CrossRefGoogle Scholar
  44. Zeng Y, Lian S, Li D, Lin X, Chen B, Wei H, Yang T (2017) Anti-hepatocarcinoma effect of cordycepin against NDEA-induced hepatocellular carcinomas via the PI3K/Akt/mTOR and Nrf2/HO-1/NF-kappaB pathway in mice. Biomed Pharmacother 95:1868–1875CrossRefGoogle Scholar
  45. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC, Reibel JB, Tamayo P, Godfrey JT, Qian ZR, Page AN, Maciag K, Chan EM, Silkworth W, Labowsky MT, Rozhansky L, Mesirov JP, Gillanders WE, Ogino S, Hacohen N, Gaudet S, Eck MJ, Engelman JA, Corcoran RB, Wong KK, Hahn WC, Barbie DA (2014) Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov 4:452–465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations