DNA Binding and Molecular Dynamic Studies of Polycyclic Tetramate Macrolactams (PTM) with Potential Anticancer Activity Isolated from a Sponge-Associated Streptomyces zhaozhouensis subsp. mycale subsp. nov.

Abstract

A sponge-associated actinomycete (strain MCCB267) was isolated from a marine sponge Mycale sp. collected in the Indian Ocean off the Southeast coast of India. Phylogenetic studies of this strain using 16S rRNA gene sequencing showed high sequence similarity to Streptomyces zhaozhouensis. However, strain MCCB267 showed distinct physiological and biochemical characteristic features and was thus designated as S. zhaozhouensis subsp. mycale. subsp. nov. A cytotoxicity-guided fractionation of the crude ethyl acetate extract of strain MCCB267 culture medium yielded four pure compounds belonging to the polycyclic tetramate macrolactam (PTM) family of natural products: ikarugamycin (IK) (1), clifednamide A (CF) (2), 30-oxo-28-N-methylikarugamycin (OI) (3), and 28-N-methylikarugamycin (MI) (4). The four compounds exhibited promising cytotoxic activity against NCI-H460 lung carcinoma cells in vitro, by inducing cell death via apoptosis. Flow cytometric analysis revealed that 1, 3, and 4 induced cell cycle arrest during G1 phase in the NCI-H460 cell line, whereas 2 induced cell arrest in the S phase. A concentration-dependent accumulation of cells in the sub-G1 phase was also detected upon treatment of the cancer cell line with compounds 1–4. The in vitro cytotoxicity studies were supported by molecular docking and molecular dynamic simulation analyses. An in silico study revealed that the PTMs can bind to the minor groove of DNA and subsequently induce the apoptotic stimuli leading to cell death. The characterization of the isolated actinomycete, the study of the mode of action of the four PTMs, 1–4, and the molecular docking and molecular dynamic simulations analyses are herein described.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    Article  Google Scholar 

  2. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  3. Blodgett JA, Oh DC, Cao S, Currie CR, Kolter R, Clardy J (2010) Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci 107:11692–11697

    Article  PubMed  Google Scholar 

  4. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382–431

    Article  CAS  PubMed  Google Scholar 

  5. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2017) Marine natural products. Nat Prod Rep 34:235–294

    Article  CAS  PubMed  Google Scholar 

  6. Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2018) Marine natural products. Nat Prod Rep 35:8–53

    Article  CAS  PubMed  Google Scholar 

  7. Bredholt H, Fjaervik E, Johnsen G, Zotchev SB (2008) Actinomycetes from sediments in the Trondheim Fjord, Norway: diversity and biological activity. Mar Drugs 6:12–24

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brownlee KA, Finney DJ, Tattersfield F (1952) Probit analysis: a statistical treatment of the sigmoid response curve. J Am Stat Assoc 47:687

    Article  Google Scholar 

  9. Cao S, Blodgett JA, Clardy J (2010) Targeted discovery of polycyclic tetramate macrolactams from an environmental Streptomyces strain. Org Lett 12:4652–4654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. ChemAxon (2013) Marvin Sketch. https://www.chemaxon.com/products/marvin/

  11. DeLano WL (2002) The PyMOL user’s manual. DeLano Scientific, San Carlos

    Google Scholar 

  12. Ding Y, Li Y, Li Z, Zhang J, Lu C, Wang H, Shen Y, Du L (2016) Alteramide B is a microtubule antagonist of inhibiting Candida albicans. Biochim Biophys Acta 1860:2097–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  14. Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF chimera. J Struct Biol 157:281–287

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez JM (2002) Brief report a fluorimetric method for the estimation of G + C mol % content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773

    Article  CAS  PubMed  Google Scholar 

  16. Gunasekera SP, Gunasekera M, McCarthy P (1991) Discodermide: a new bioactive macrocyclic lactam from the marine sponge Discodermia dissoluta. J Org Chem 56:4830–4833

    Article  CAS  Google Scholar 

  17. Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544

    Article  CAS  PubMed  Google Scholar 

  18. He H, Liu C, Zhao J, Li W, Pan T, Yang L, Wang X, Xiang W (2014) Streptomyces zhaozhouensis sp. nov., an actinomycete isolated from Candelabra aloe (Aloe arborescens Mill). Int J Syst Evol Microbiol 64:1096–1101

    Article  CAS  PubMed  Google Scholar 

  19. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  20. Jomon K, Kuroda Y, Ajisaka M, Sakai H (1972) A new antibiotic, ikarugamycin. J Antibiot (Tokyo) 25:271–280

    Article  CAS  Google Scholar 

  21. Kanazawa S, Fusetani N, Matsunaga S (1993) Cylindramide: cytotoxic tetramic acid lactam from the marine sponge Halichondria cylindrata Tanita & Hoshino. Tetrahedron Lett 34:1065–1068

    Article  CAS  Google Scholar 

  22. Kelly KL (1964) Inter-Society Color Council—National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. US Government Printing Office, Washington, D.C

    Google Scholar 

  23. Kim SB, Lonsdale J, Seong CN, Goodfellow M (2003) Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997. Antonie Van Leeuwenhoek 83:107–116

    Article  CAS  PubMed  Google Scholar 

  24. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  PubMed  Google Scholar 

  25. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962

    Article  CAS  PubMed  Google Scholar 

  26. Lacret R, Oves-Costales D, Gómez C, Díaz C, de la CM, Pérez-Victoria I, Vicente F, Genilloud O, Reyes F (2014) New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar Drugs 13:128–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Zhao G-Z, Qin S, Zhu WY, Xu LH, Li WJ (2009) Streptomyces sedi sp. nov., isolated from surface-sterilized roots of Sedum sp. Int J Syst Evol Microbiol 59:1492–1496

    Article  CAS  PubMed  Google Scholar 

  28. Luo T, Fredericksen BL, Hasumi K, Endo A, Garcia JV (2001) Human immunodeficiency virus type 1 Nef-induced CD4 cell surface downregulation is inhibited by ikarugamycin. J Virol 75:2488–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mo X, Li Q, Ju J (2014) Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity. RSC Adv 4:50566–50593

    Article  CAS  Google Scholar 

  30. Mori T, Cahn JKB, Wilson MC, Meoded RA, Wiebach V, Martinez AFC, Helfrich EJN, Albersmeier A, Wibberg D, Dätwyler S, Keren R, Lavy A, Rückert C, Ilan M, Kalinowski J, Matsunaga S, Takeyama H, Piel J (2018) Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc Natl Acad Sci 115:1718–1723

    Article  CAS  PubMed  Google Scholar 

  31. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  32. Norgan AP, Coffman PK, Kocher JPA, Katzmann DJ, Sosa CP (2011) Multilevel parallelization of AutoDock 4.2. J Cheminform 3:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olano C, Méndez C, Salas JA (2009) Antitumor compounds from marine actinomycetes. Mar Drugs 7:210–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J 92:3817–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petersen HG (1995) Accuracy and efficiency of the particle mesh Ewald method. J Chem Phys 103:3668–3679

    Article  CAS  Google Scholar 

  36. Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362

    Article  CAS  PubMed  Google Scholar 

  37. Popescu R, Heiss EH, Ferk F, Peschel A, Knasmueller S, Dirsch VM, Krupitza G, Kopp B (2011) Ikarugamycin induces DNA damage, intracellular calcium increase, p38 MAP kinase activation and apoptosis in HL-60 human promyelocytic leukemia cells. Mutat Res 709–710:60–66

    Article  CAS  PubMed  Google Scholar 

  38. Proksch P, Edrada R, Ebel R (2002) Drugs from the seas—current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134

    Article  CAS  PubMed  Google Scholar 

  39. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci 114:5601–5606

    Article  CAS  PubMed  Google Scholar 

  40. Qi Y, Ding E, Joshua AVJ (2018) Native and engineered clifednamide biosynthesis in multiple Streptomyces spp. ACS Synth Biol 7:357–362

    Article  CAS  PubMed  Google Scholar 

  41. Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363

    Article  CAS  PubMed  Google Scholar 

  42. Shigemori H, Kobayashi J, Bae M, Yazawa K, Sasaki T (1992) Alteramide A, a new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai. J Org Chem 57:4317–4320

    Article  CAS  Google Scholar 

  43. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  44. Simmons TL, Coates RC, Clark BR, Engene N, Gonzalez D, Esquenazi E, Dorrestein PC, Gerwick WH (2008) Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci 105:4587–4594

    Article  PubMed  Google Scholar 

  45. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang XW, Zhang GY, Ying JX, Yang B, Zhou XF, Steinmetz A, Liu YH, Wang N (2013) Isolation, characterization, and bioactivity evaluation of 3-((6-methylpyrazin-2-yl)methyl)-1H-indole, a new alkaloid from a deep-sea-derived actinomycete Serinicoccus profundi sp. nov. Mar Drugs 11:33–39

    Article  CAS  Google Scholar 

  47. Zhang H, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie Van Leeuwenhoek 90:159–169

    Article  CAS  PubMed  Google Scholar 

  48. Zhang G, Zhang W, Zhang Q, Shi T, Ma L, Zhu Y, Li S, Zhang H, Zhao YL, Shi R, Zhang C (2014) Mechanistic insights into polycycle formation by reductive cyclization in ikarugamycin biosynthesis. Angew Chem Int Ed 53:4840–4844

    Article  CAS  Google Scholar 

Download references

Funding

DM would like to thank the Kerala State Council for Science, Technology and Environment, Government of Kerala, India for project funding under best paper award scheme (292/2016/KSCSTE dated 7 July 2016) and Cochin University of Science and Technology and Kerala State Council for Science, Technology and Environment, Government of Kerala, India for funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. P. Sajeevan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Online Resource 1

Cultural characteristics of Streptomyces sp. MCCB267 on various media after 2 weeks of growth at 28 °C. (PDF 153 kb)

Online Resource 2

Carbon source utilization pattern of Streptomyces sp. MCCB267. (PDF 148 kb)

Online Resource 3

NMR data of the ikarugamycin derivatives 1–4. (PDF 196 kb)

Online Resource 4

Probit regression line for the determination of IC50 of a) CF, b) OI, c) IK and d) MI on NCI-H460 cells. (PDF 184 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhaneesha, M., Hasin, O., Sivakumar, K.C. et al. DNA Binding and Molecular Dynamic Studies of Polycyclic Tetramate Macrolactams (PTM) with Potential Anticancer Activity Isolated from a Sponge-Associated Streptomyces zhaozhouensis subsp. mycale subsp. nov.. Mar Biotechnol 21, 124–137 (2019). https://doi.org/10.1007/s10126-018-9866-9

Download citation

Keywords

  • Streptomyces
  • Polycyclic tetramate macrolactams
  • Ikarugamycin
  • Clifednamide
  • Anticancer
  • Apoptosis