Skip to main content
Log in

Pparγ Is Involved in the Transcriptional Regulation of Liver LC-PUFA Biosynthesis by Targeting the Δ6Δ5 Fatty Acyl Desaturase Gene in the Marine Teleost Siganus canaliculatus

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

As the first marine teleost demonstrated to have the ability of long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis from C18 PUFA precursors, the rabbitfish Siganus canaliculatus provides us a unique model for clarifying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts aiming at the replacement of dietary fish oil (rich in LC-PUFA) with vegetable oils (rich in C18 PUFA precursors but devoid of LC-PUFA). In the study of transcription regulation of gene encoding the Δ6Δ5 fatty acyl desaturase (Δ6Δ5 Fads), a rate-limiting enzyme catalyzing the first step of LC-PUFA biosynthesis in rabbitfish, a binding site for the transcription factor (TF), peroxisome proliferator-activated receptor γ (Pparγ), was predicted in Δ6Δ5 fads2 promoter by bioinformatics analysis, and thus the present study focused on the regulatory roles of Pparγ on Δ6Δ5 fads2. First, the activity of the Δ6Δ5 fads2 promoter was proved to be downregulated by pparγ overexpression and upregulated by treatment of Pparγ antagonist (GW9662), respectively, in HEK 293T cells with the dual luciferase reporter assay. Pparγ was further confirmed to interact with the promoter by electrophoretic mobility shift assay. Moreover, in S. canaliculatus hepatocyte line (SCHL) cells, GW9662 decreased the expression of pparγ together with increase of Δ6Δ5 fads2 mRNA. Besides, Δ6Δ5 fads2 expression was increased by pparγ RNAi knockdown and reduced by its mRNA overexpression. Furthermore, knockdown of pparγ induced a high conversion of 18:3n−3 to 18:4n−3 and 18:2n−6 to 18:3n−6, while pparγ mRNA overexpression led to a lower conversion of that, and finally a significant decrease of 20:4n-6(ARA), 20:5n-3(EPA), and 22:6n-3(DHA) production. The results indicate that Pparγ is involved in the transcriptional regulation of liver LC-PUFA biosynthesis by targeting Δ6Δ5 fads2 in rabbitfish, which is the first report of Pparγ involvement in the regulation of LC-PUFA biosynthesis in teleosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid (18:3n-3)

ARA:

Arachidonic acid (20:4n-6)

CPT-1:

Carnitine palmitoyl transferase-1

DHA:

Docosahexaenoic acid (22:6n-3)

EFA:

Essential fatty acid

EPA:

Eicosapentaenoic acid (20:5n-3)

Fads:

Fatty acyl desaturases

FABP:

Fatty acid binding protein

FO:

Fish oil

HEK 293T cell:

Human embryonic kidney 293T cell

HNF4α:

Hepatocyte nuclear factor 4α

LC-PUFA:

Long-chain polyunsaturated fatty acids

LPL:

Lipoprotein lipase

Lxr:

Liver X receptor

Pparγ:

Peroxisome proliferator-activated receptor γ

PUFA:

Polyunsaturated fatty acids

Q-PCR:

Quantitative polymerase chain reaction

SCHL:

Siganus canaliculatus hepatocyte line

Srebp:

Sterol regulatory element binding protein

TF:

Transcription factor

TSS:

Transcription start site

VO:

Vegetable oil

References

  • Adeghate E, Adem A, Hasan MY, Tekes K, Kalasz H (2011) Suppl 2: medicinal chemistry and actions of dual and Pan PPAR modulators. Open Med Chem J 5:93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auwerx J (1999) PPARgamma, the ultimate thrifty gene. Diabetologia 42:1033–1049

    Article  CAS  PubMed  Google Scholar 

  • Bell J, Mcevoy J, Tocher DR, Mcghee F, Campbell P, Sargent J (2001) Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. J Nutr 131:1535–1543

    Article  CAS  PubMed  Google Scholar 

  • Benitezsantana T, Masuda R, Juarez CE, Ganuza E, Valencia A, Hernandezcruz CM, Izquierdo MS (2007) Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabream Sparus aurata larvae. Aquaculture 264:408–417

    Article  CAS  Google Scholar 

  • Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV (1993) The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N Engl J Med 328:238–244

    Article  CAS  PubMed  Google Scholar 

  • Carmona-Antoñanzas G, Tocher DR, Martinez-Rubio L, Leaver MJ (2014) Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals. Gene 534:1–9

    Article  CAS  PubMed  Google Scholar 

  • Castro LFC, Monroig Ó, Leaver MJ, Wilson J, Cunha I, Tocher DR (2012) Functional desaturase Fads1 (Δ5) and Fads2 (Δ6) orthologues evolved before the origin of jawed vertebrates. PLoS One 7:e31950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro LFC, Tocher DR, Monroig Ó (2016) Long-chain polyunsaturated fatty acid biosynthesis in chordates: insights into the evolution of Fads and Elovl gene repertoire. Prog Lipid Res 62:25–40

    Article  CAS  PubMed  Google Scholar 

  • Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism. Physiol Rev 86:465–514

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Wang S, Chen J, Zhang Q, Liu Y, You C, Monroig Ó, Tocher DR, Li Y (2016) Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor of vertebrate fatty acyl desaturase gene as identified in marine teleost Siganus canaliculatus. PLoS One 11:e0160361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Zhao J, Chen J, Wang S, Liu Y, Zhang Q, You C, Monroig Ó, Tocher DR, Li Y (2018) Cloning and characterization of ∆6/∆5 fatty acyl desaturase (Fad) gene promoter in the marine teleost Siganus canaliculatus. Gene 647:174–180

    Article  CAS  PubMed  Google Scholar 

  • Forman BM, Chen J, Evans RM (1996) The peroxisome proliferator-activated receptors: ligands and activators. Ann N Y Acad Sci 804:266–275

    Article  CAS  PubMed  Google Scholar 

  • Gearing KL, Göttlicher M, Widmark E, Banner CD, Tollet P, Strömstedt M, Rafter JJ, Berge RK, Gustafsson JA (1994) Fatty acid activation of the peroxisome proliferator activated receptor, a member of the nuclear receptor gene superfamily. J Nutr 124:1284S–1288S

    Article  CAS  PubMed  Google Scholar 

  • Geay F, Zamboninoinfante J, Reinhardt R, Kuhl H, Santigosa E, Cahu C, Mazurais D (2012) Characteristics of fads2 gene expression and putative promoter in European sea bass (Dicentrarchus labrax): comparison with salmonid species and analysis of CpG methylation. Mar Genomics 5:7–13

    Article  PubMed  Google Scholar 

  • Gurnell M (2005) Peroxisome proliferator-activated receptor γ and the regulation of adipocyte function: lessons from human genetic studies. Best Pract Res Clin Endocrinol Metab 19:501–523

    Article  CAS  PubMed  Google Scholar 

  • Lapsys NM, Kriketos AD, Limfraser M, Poynten AM, Lowy A, Furler SM, Chisholm DJ, Cooney GJ (2000) Expression of genes involved in lipid metabolism correlate with peroxisome proliferator-activated receptor gamma expression in human skeletal muscle. J Clin Endocrinol Metab 85:4293–4297

    CAS  PubMed  Google Scholar 

  • Leaver MJ, Villeneuve LA, Obach A, Jensen L, Bron JE, Tocher DR, Taggart JB (2008) Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genomics 9:299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, Davis RG, Hull-Ryde EA, Lenhard JM, Patel L (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41:6640–6650

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hu C, Zheng Y, Xia X, Xu W, Wang S, Chen W, Sun Z, Huang J (2008) The effects of dietary fatty acids on liver fatty acid composition and Delta(6)-desaturase expression differ with ambient salinities in Siganus canaliculatus. Comp Biochem Physiol B Biochem Mol Biol 151:183–190

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Monroig Ó, Zhang L, Wang S, Zheng X, Dick JR, You C, Tocher DR (2010) Vertebrate fatty acyl desaturase with Δ4 activity. Proc Natl Acad Sci U S A 107:16840–16845

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang Q, Dong Y, Wang S, You C, Li Y, Li Y (2017) Establishment of a hepatocyte line for studying biosynthesis of long-chain polyunsaturated fatty acids from a marine teleost, the white-spotted spinefoot Siganus canaliculatus. J Fish Biol 91:603–616

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lorente-Cebrián S, Costa AG, Navas-Carretero S, Zabala M, Martínez JA, Moreno-Aliaga MJ (2013) Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem 69:633–651

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaka T, Shimano H, Yahagi N, Amemiyakudo M, Yoshikawa T, Hasty AH, Tamura Y, Osuga J, Okazaki H, Iizuka Y (2002) Dual regulation of mouse delta(5)- and delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. J Lipid Res 43:107–114

    CAS  PubMed  Google Scholar 

  • Monroig Ó, Wang S, Zhang L, You C, Tocher DR, Li Y (2012) Elongation of long-chain fatty acids in rabbitfish Siganus canaliculatus : cloning, functional characterisation and tissue distribution of Elovl5- and Elovl4-like elongases. Aquaculture 350-353:63–70

    Article  CAS  Google Scholar 

  • Poulsen LLC, Siersbæk M, Mandrup S (2012) PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 23:631–639

    Article  CAS  PubMed  Google Scholar 

  • Ruyter B, Andersen O, Dehli A, Ostlund Farrants AK, Gjøen T, Thomassen MS (1997) Peroxisome proliferator activated receptors in Atlantic salmon (Salmo salar): effects on PPAR transcription and acyl-CoA oxidase activity in hepatocytes by peroxisome proliferators and fatty acids. Biochim Biophys Acta 1348:331–338

    Article  CAS  PubMed  Google Scholar 

  • Sargent JR, Tocher DR, Bell JG (2002) The lipids, vol 3. In: Halver JE, Hardy RW (eds) Fish nutrition. Academic Press, San Diego, p 181–257

  • Schmitz G, Ecker J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47:147–155

    Article  CAS  PubMed  Google Scholar 

  • Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J (1996) PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15:5336–5348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang C, Cho HP, Nakamura MT, Clarke SD (2003) Regulation of human delta-6 desaturase gene transcription: identification of a functional direct repeat-1 element. J Lipid Res 44:686–695

    Article  CAS  PubMed  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107

    Article  CAS  Google Scholar 

  • Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem 77:289–312

    Article  CAS  Google Scholar 

  • Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36:885–895

    Article  CAS  PubMed  Google Scholar 

  • Vagner M, Robin JH, Zamboninoinfante JL, Tocher DR, Personle RJ (2009) Ontogenic effects of early feeding of sea bass (Dicentrarchus labrax) larvae with a range of dietary n-3 highly unsaturated fatty acid levels on the functioning of polyunsaturated fatty acid desaturation pathways. Br J Nutr 101:1452–1462

    Article  CAS  PubMed  Google Scholar 

  • Wahl HG, Kausch C, Machicao F, Rett K, Stumvoll M, Häring HU (2002) Troglitazone downregulates Δ-6 desaturase gene expression in human skeletal muscle cell cultures. Diabetes 51:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Wijngaarden LV (1967) On the growth of small cavitation bubbles by convective diffusion. Int J Heat Mass Transf 10:127–134

    Article  Google Scholar 

  • Xie D, Fu Z, Wang S, You C, Monroig Ó, Tocher DR, Li Y (2018) Characteristics of the fads2 gene promoter in marine teleost Epinephelus coioides and role of Sp1-binding site in determining promoter activity. Sci Rep 8:5305

  • Xu H, Dong X, Ai Q, Mai K, Xu W, Zhang Y, Zuo R (2014) Regulation of tissue LC-PUFA contents, Δ6 fatty acyl desaturase (FADS2) gene expression and the methylation of the putative FADS2 gene promoter by different dietary fatty acid profiles in Japanese seabass (Lateolabrax japonicus). PLoS One 9:e87726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You C, Jiang D, Zhang Q, Xie D, Wang S, Dong Y, Li Y (2017) Cloning and expression characterization of peroxisome proliferator-activated receptors (PPARs) with their agonists, dietary lipids, and ambient salinity in rabbitfish Siganus canaliculatus. Comp Biochem Physiol B Biochem Mol Biol 206:54–64

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Xie D, Wang S, You C, Monroig Ó, Tocher DR, Li Y (2014) miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus. Biochim Biophys Acta 1841:934–943

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, You C, Liu F, Zhu W, Wang S, Xie D, Monroig Ó, Tocher DR, Li Y (2016a) Cloning and characterization of Lxr and Srebp1, and their potential roles in regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. Lipids 51:1–13

    Article  CAS  Google Scholar 

  • Zhang Q, You C, Wang S, Dong Y, Monroig Ó, Tocher DR, Li Y (2016b) The miR-33 gene is identified in a marine teleost: a potential role in regulation of LC-PUFA biosynthesis in Siganus canaliculatus. Sci Rep 6:32909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Leaver MJ, Tocher DR (2009) Long-chain polyunsaturated fatty acid synthesis in fish: comparative analysis of Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) Delta6 fatty acyl desaturase gene promoters. Comp Biochem Physiol B Biochem Mol Biol 154:255–263

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Research Projects from National Natural Science Foundation of China (No. 31873040 and 31110103913) and China Agriculture Research System (CARS-47).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyou Li or Cuihong You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yin, Z., Dong, Y. et al. Pparγ Is Involved in the Transcriptional Regulation of Liver LC-PUFA Biosynthesis by Targeting the Δ6Δ5 Fatty Acyl Desaturase Gene in the Marine Teleost Siganus canaliculatus. Mar Biotechnol 21, 19–29 (2019). https://doi.org/10.1007/s10126-018-9854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9854-0

Keywords

Navigation