Marine Biotechnology

, Volume 20, Issue 4, pp 436–450 | Cite as

Regulation of Extracellular Matrix Synthesis by Shell Extracts from the Marine Bivalve Pecten maximus in Human Articular Chondrocytes— Application for Cartilage Engineering

  • Mouloud Bouyoucef
  • Rodolphe Rakic
  • Tangni Gómez-Leduc
  • Thomas Latire
  • Frédéric Marin
  • Sylvain Leclercq
  • Franck Carreiras
  • Antoine Serpentini
  • Jean-Marc Lebel
  • Philippe Galéra
  • Florence Legendre
Original Article


The shells of the bivalve mollusks are organo-mineral structures predominantly composed of calcium carbonate, but also of a minor organic matrix, a mixture of proteins, glycoproteins, and polysaccharides. These proteins are involved in mineral deposition and, more generally, in the spatial organization of the shell crystallites in well-defined microstructures. In this work, we extracted different organic shell extracts (acid-soluble matrix, acid-insoluble matrix, water-soluble matrix, guanidine HCl/EDTA-extracted matrix, referred as ASM, AIM, WSM, and EDTAM, respectively) from the shell of the scallop Pecten maximus and studied their biological activities on human articular chondrocytes (HACs). We found that these extracts differentially modulate the biological activities of HACs, depending on the type of extraction and the concentration used. Furthermore, we showed that, unlike ASM and AIM, WSM promotes maintenance of the chondrocyte phenotype in monolayer culture. WSM increased the expression of chondrocyte-specific markers (aggrecan and type II collagen), without enhancing that of the main chondrocyte dedifferentiation marker (type I collagen). We also demonstrated that WSM could favor redifferentiation of chondrocyte in collagen sponge scaffold in hypoxia. Thus, this study suggests that the organic matrix of Pecten maximus, particularly WSM, may contain interesting molecules with chondrogenic effects. Our research emphasizes the potential use of WSM of Pecten maximus for cell therapy of cartilage.


Pecten maximus Shell extracts Water-soluble matrix Human articular chondrocytes Cartilage engineering 



The project received the label of AQUIMER pole (M. Coquelle). The authors thank Copalis (Boulogne-Sur-Mer, France) for providing the shell powders.

Author Contributions

MB, JML, PG, and FL designed the experiments. MB, RR, TGL, TL, and FL performed the experiments. MB, AS, JML, PG, and FL analyzed the data. FC, FM, and SL contributed the reagents, materials, and analysis tools. MB and FL wrote the paper. AS, FM, and PG realized the critical revision of the article. JML and PG provided the financial support.


This work was financially supported by the “Fonds Unique Interministériel” (FUI, French Government) through the SEAMINEROIL program to PG and JML. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. MB: Fellowship from the Regional Council of Lower Normandy. TGL: Fellowship from the French Ministry of Research and Technology. TL: Fellowship supported by the SEAMINEROIL grant from the FUI. FL: Post-doctoral fellow supported by a 1-year grant from the FUI.

Compliance with Ethical Standards

All patients signed an informed consent agreement form, which was approved by the local ethics committee.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

10126_2018_9807_Fig8_ESM.gif (25 kb)
Fig. S1

Effect of WSM of calcium carbonate on the metabolic activity of chondrocytes cultured in monolayers. HACs were cultured for 24, 48 and 72 h in monolayers in normoxia, with or without 50, 100, 250, 500 and 1000 μg/ml of WSM of CaCO3. The metabolic activity was measured using the WST-1 assay and represented as box plots (n = 4). The significance of the results was assessed using the Kruskal Wallis test (no significant differences). (GIF 24 kb).

10126_2018_9807_MOESM1_ESM.tif (631 kb)
High Resolution Image (TIFF 630 kb).


  1. Almeida MJ, Milet C, Peduzzi J, Pereira L, Haigle J, Barthelemy M, Lopez E (2000) Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. J Exp Zool 288:327–334Google Scholar
  2. Arivalagan J, Yarra T, Marie B, Sleight VA, Duvernois-Berthet E, Clark MS, Marie A, Berland S (2017) Insights from the shell proteome: biomineralization to adaptation. Mol Biol Evol 34:66–77CrossRefPubMedGoogle Scholar
  3. Atlan G, Balmain N, Berland S et al (1997) Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. C R Acad Sci III Sci Vie 320:253–258CrossRefGoogle Scholar
  4. Atlan G, Delattre O, Berland S, LeFaou A, Nabias G, Cot D, Lopez E (1999) Interface between bone and nacre implants in sheep. Biomaterials 20:1017–1022CrossRefPubMedGoogle Scholar
  5. Bédouet L, Rusconi F, Rousseau M, Duplat D, Marie A, Dubost L, le Ny K, Berland S, Péduzzi J, Lopez E (2006) Identification of low molecular weight molecules as new components of the nacre organic matrix. Comp Biochem Physiol B Biochem Mol Biol 144:532–543CrossRefPubMedGoogle Scholar
  6. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2:81–96CrossRefPubMedGoogle Scholar
  7. Chaturvedi R, Singha PK, Dey S (2013) Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation. PLoS One 8:e84584CrossRefPubMedPubMedCentralGoogle Scholar
  8. Demoor M, Maneix L, Ollitrault D, Legendre F, Duval E, Claus S, Mallein-Gerin F, Moslemi S, Boumediene K, Galera P (2012) Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix. Pathol Biol 60:199–207CrossRefPubMedGoogle Scholar
  9. Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H, Lafont J, Denoix JM, Audigié F, Mallein-Gerin F, Legendre F, Galera P (2014) Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta 1840:2414–2440CrossRefPubMedGoogle Scholar
  10. Gao P, Liao Z, Wang X-X, Bao LF, Fan MH, Li XM, Wu CW, Xia SW (2015) Layer-by-layer proteomic analysis of Mytilus galloprovincialis shell. PLoS One 10:e0133913CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lamghari M, Almeida MJ, Berland S, Huet H, Laurent A, Milet C, Lopez E (1999) Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone 25:91S–94SCrossRefPubMedGoogle Scholar
  12. Latire T, Legendre F, Bigot N, Carduner L, Kellouche S, Bouyoucef M, Carreiras F, Marin F, Lebel JM, Galéra P, Serpentini A (2014) Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts. PLoS One 9:e99931CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lee K, Kim H, Kim JM, Chung YH, Lee TY, Lim HS, Lim JH, Kim T, Bae JS, Woo CH, Kim KJ, Jeong D (2011) Nacre-driven water-soluble factors promote wound healing of the deep burn porcine skin by recovering angiogenesis and fibroblast function. Mol Biol Rep 39:3211–3218CrossRefPubMedGoogle Scholar
  14. Legendre F, Dudhia J, Pujol J-P, Bogdanowicz P (2003) JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. J Biol Chem 278:2903–2912CrossRefPubMedGoogle Scholar
  15. Legendre F, Heuze A, Boukerrouche K, Leclercq S, Boumediene K, Galera P, Domagala F, Pujol JP, Ficheux H (2009) Rhein, the metabolite of diacerhein, reduces the proliferation of osteoarthritic chondrocytes and synoviocytes without inducing apoptosis. Scand J Rheumatol 38:104–111CrossRefPubMedGoogle Scholar
  16. Legendre F, Ollitrault D, Hervieu M, Baugé C, Maneix L, Goux D, Chajra H, Mallein-Gerin F, Boumediene K, Galera P, Demoor M (2013) Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Tissue Eng Part C Methods 19:550–567CrossRefPubMedGoogle Scholar
  17. Lelong C, Mathieu M, Favrel P (2001) Identification of new bone morphogenetic protein-related members in invertebrates. Biochimie 83:423–426CrossRefPubMedGoogle Scholar
  18. Liu YC, Torita A, Hasegawa Y (2006) Scallop shell extract promotes recovery from UV-B-induced damage in rat skin epidermal layer. Fish Sci 72:388–392CrossRefGoogle Scholar
  19. Lopez E, Vidal B, Berland S, Camprasse S, Camprasse G, Silve C (1992) Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667–679CrossRefPubMedGoogle Scholar
  20. Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124CrossRefGoogle Scholar
  21. Marie B, Joubert C, Tayalé A et al (2012) Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci U S A 109:20986–20991CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276CrossRefPubMedGoogle Scholar
  23. Marin F, Le Roy N, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci (Schol Ed) 4:1099–1125CrossRefGoogle Scholar
  24. Markway BD, Cho H, Johnstone B (2013) Hypoxia promotes redifferentiation and suppresses markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes. Arthritis Res Ther 15:R92CrossRefPubMedPubMedCentralGoogle Scholar
  25. Marlovits S, Zeller P, Singer P, Resinger C, Vécsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57:24–31CrossRefPubMedGoogle Scholar
  26. Matsushiro A, Miyashita T (2004) Evolution of hard-tissue mineralization: comparison of the inner skeletal system and the outer shell system. J Bone Miner Metab 22:163–169CrossRefPubMedGoogle Scholar
  27. Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A 93:9657–9660CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mouriès LP, Almeida M-J, Milet C et al (2002) Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 132:217–229CrossRefPubMedGoogle Scholar
  29. Nederbragt AJ, van Loon AE, Dictus WJAG (2002) Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–355CrossRefPubMedGoogle Scholar
  30. Ollitrault D, Legendre F, Drougard C, Briand M, Benateau H, Goux D, Chajra H, Poulain L, Hartmann D, Vivien D, Shridhar V, Baldi A, Mallein-Gerin F, Boumediene K, Demoor M, Galera P (2015) BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes. Tissue Eng Part C Methods 21:133–147CrossRefPubMedGoogle Scholar
  31. Pereira-Mouriès L, Almeida M-J, Ribeiro C, Peduzzi J, Barthélemy M, Milet C, Lopez E (2002) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. Eur J Biochem 269:4994–5003CrossRefPubMedGoogle Scholar
  32. Pfeilschifter J, Laukhuf F, Müller-Beckmann B, Blum WF, Pfister T, Ziegler R (1995) Parathyroid hormone increases the concentration of insulin-like growth factor-I and transforming growth factor beta 1 in rat bone. J Clin Invest 96:767–774CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rousseau M, Pereira-Mouriès L, Almeida MJ, Milet C, Lopez E (2003) The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 135:1–7PubMedGoogle Scholar
  34. Shen Y, Zhu J, Zhang H, Zhao F (2006) In vitro osteogenetic activity of pearl. Biomaterials 27:281–287CrossRefPubMedGoogle Scholar
  35. Silve C, Lopez E, Vidal B, Smith DC, Camprasse S, Camprasse G, Couly G (1992) Nacre initiates biomineralization by human osteoblasts maintained in vitro. Calcif Tissue Int 51:363–369CrossRefPubMedGoogle Scholar
  36. Torita A, Liu YC, Hasegawa Y (2004) Photoprotective activity of scallop shell water-extract in keratinocyte cells. Fish Sci 70:910–915CrossRefGoogle Scholar
  37. Torita A, Miyamoto A, Hasegawa Y (2007) The effects of scallop shell extract on collagen synthesis. Fish Sci 73:1388–1394Google Scholar
  38. Weiss IM, Göhring W, Fritz M, Mann K (2001) Perlustrin, a Haliotis laevigata (abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochem Biophys Res Commun 285:244–249CrossRefPubMedGoogle Scholar
  39. Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392:861–862CrossRefPubMedGoogle Scholar
  40. Zhang C, Zhang R (2006) Matrix proteins in the outer shells of molluscs. Mar Biotechnol (NY) 8:572–586CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mouloud Bouyoucef
    • 1
  • Rodolphe Rakic
    • 1
  • Tangni Gómez-Leduc
    • 1
  • Thomas Latire
    • 2
  • Frédéric Marin
    • 3
  • Sylvain Leclercq
    • 4
  • Franck Carreiras
    • 5
  • Antoine Serpentini
    • 2
  • Jean-Marc Lebel
    • 2
  • Philippe Galéra
    • 1
  • Florence Legendre
    • 1
  1. 1.Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), Equipe MIPDF, EA 4652Normandie University, UNICAEN, BIOTARGENCaenFrance
  2. 2.UMR BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, MNHN, UPMC, UCN, CNRS-7208, IRD-207, UFR des SciencesNormandie University, UNICAENCaenFrance
  3. 3.UMR 6282 CNRS “Biogéosciences”Université de Bourgogne Franche-Comté (UBFC)DijonFrance
  4. 4.Département de Chirurgie Orthopédique, Clinique Saint-MartinCaenFrance
  5. 5.Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), EA 1391, Institut des MatériauxUniversité de Cergy-PontoiseCergy-Pontoise cedexFrance

Personalised recommendations