Skip to main content
Log in

The Molecular Differentiation of Anatomically Paired Left and Right Mantles of the Pacific Oyster Crassostrea gigas

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Left-right (L-R) asymmetry is controlled by gene regulation pathways for the L-R axis, and in vertebrates, the gene Pitx2 in TGF−β signaling pathway plays important roles in the asymmetrical formation of organs. However, less is known about the asymmetries of anatomically identical paired organs, as well as the transcriptional regulation mechanism of the gene Pitx in invertebrates. Here, we report the molecular biological differences between the left and right mantles of an invertebrate, the Pacific oyster Crassostrea gigas, and propose one possible mechanism underlying those differences. RNA sequencing (RNA-seq) analysis indicated that the paired organs showed different gene expression patterns, suggesting possible functional differences in shell formation, pheromone signaling, nerve conduction, the stress response, and other physiological processes. RNA-seq and real-time qPCR analysis indicated high right-side expression of the Pitx homolog (cgPitx) in oyster mantle, supporting a conserved role for Pitx in controlling asymmetry. Methylation-dependent restriction-site associated DNA sequencing (MethylRAD) identified a methylation site in the promoter region of cgPitx and showed significantly different methylation levels between the left and right mantles. This is the first report, to our knowledge, of such a difference in methylation in spiralians, and it was further confirmed in 18 other individuals by using a pyrosequencing assay. The miRNome analysis and the TGF-β receptor/Smad inhibition experiment further supported that several genes in TGF−β signaling pathway may be related with the L/R asymmetry of oyster mantles. These results suggested that the molecular differentiation of the oyster’s paired left and right mantles is significant, TGF−β signaling pathway could be involved in establishing or maintaining the asymmetry, and the cgPitx gene as one of genes in this pathway; the different methylation levels in its promoter regions between L/R mantles was the one of possible mechanisms regulating the left-right functional differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera F, Mcdougall C, Degnan BM (2014) Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire. Acta Biomater 10:3855–3865

    Article  PubMed  CAS  Google Scholar 

  • Anders S, Huber W (2012) Differential expression of RNA-Seq data at the gene level—the DESeq package. Embl. http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq/inst/doc/DESeq.pdf. Version: 1.30.0

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  PubMed  CAS  Google Scholar 

  • Béven L, Adenier H, Kichenama R, Homand J, Redeker V, Le CJ, Ladant D, Chopineau J (2001) Ca2+-myristoyl switch and membrane binding of chemically acylated neurocalcins. Biochemistry 40:8152–8160

    Article  PubMed  CAS  Google Scholar 

  • Barbagallo B, Prescott HA, Boyle P, Climer J, Francis MM (2010) A dominant mutation in a neuronal acetylcholine receptor subunit leads to motor neuron degeneration in Caenorhabditis elegans. J Neurosci 30:13932–13942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blank S, Arnoldi M, Khoshnavaz S, Treccani L, Kuntz M, Mann K, Grathwohl G, Fritz M (2003) The nacre protein perlucin nucleates growth of calcium carbonate crystals. J Microsc 212:280–291

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM (2009) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cummins SF, Xie F, De Vries MR, Annangudi SP, Misra M, Degnan BM, Sweedler JV, Nagle GT, Schein CH (2007) Aplysia temptin—the ‘glue’ in the water-borne attractin pheromone complex. FEBS J 274:5425–5437

    Article  PubMed  CAS  Google Scholar 

  • Dodenhof T, Dietz F, Franken S, Grunwald I, Kelm S (2014) Splice variants of perlucin from Haliotis laevigata modulate the crystallisation of CaCO3. PLoS One 9:e97126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duboc V, Röttinger E, Lapraz F, Besnardeau L, Lepage T (2005) Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Dev Cell 9:147–158

    Article  PubMed  CAS  Google Scholar 

  • Grande C (2010) Left-right asymmetries in Spiralia. Integr Comp Biol 50:744–755

    Article  PubMed  Google Scholar 

  • Grande C, Martin-Duran JM, Kenny NJ, Truchado-Garcia M, Hejnol A (2014) Evolution, divergence and loss of the Nodal signalling pathway: new data and a synthesis across the Bilateria. Int J Dev Biol 58:521–532

    Article  PubMed  Google Scholar 

  • Grande C, Patel NH (2009) Nodal signalling is involved in left-right asymmetry in snails. Nature 457:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Harvey RP (1998) Links in the left/right axial pathway. Cell 94:273–276

    Article  PubMed  CAS  Google Scholar 

  • His E (1996) Embryogenesis and larval development in Crassostrea gigas, experimental data and field observations on the effect of tributyltin compounds. In: Champ MA, Seligman PF (eds) Organotin. Chapman & Hall, London

    Google Scholar 

  • Hudson C, Yasuo H (2005) Patterning across the ascidian neural plate by lateral Nodal signalling sources. Development 132:1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Ihle JN (1996) STATs: signal transducers and activators of transcription. Cell 84:331–334

    Article  PubMed  CAS  Google Scholar 

  • Jezkova E, Kajo K, Zubor P, Grendar M, Malicherova B, Mendelova A, Dokus K, Lasabova Z, Plank L, Danko J (2016) Methylation in promoter regions of PITX2 and RASSF1A genes in association with clinicopathological features in breast cancer patients. Tumor Biol 37:15707–15718

    Article  CAS  Google Scholar 

  • Kaartinen V, Warburton D (2003) Fibrillin controls TGF-β activation. Nat Genet 33:331–332

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirchhof P, Kahr PC, Kaese S, Piccini I, Vokshi I, Scheld HH, Rotering H, Fortmueller L, Laakmann S, Verheule S (2011) PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet 4:123–133

    Article  PubMed  CAS  Google Scholar 

  • Kishore U, Gaboriaud C, Waters P, Shrive AK, Greenhough TJ, Reid KBM, Sim RB, Arlaud GJ (2004) C1q and tumor necrosis factor superfamily: modularity and versatility. Trends Immunol 25:551–561

    Article  PubMed  CAS  Google Scholar 

  • Kumari A, Srinivasan R, Vasishta RK, Wig JD (2009) Positive regulation of human telomerase reverse transcriptase gene expression and telomerase activity by DNA methylation in pancreatic cancer. Ann Surg Oncol 16:1051–1059

    Article  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin M (1997) Left-right asymmetry in vertebrate embryogenesis. BioEssays 19:287–296

    Article  PubMed  CAS  Google Scholar 

  • Levin M (2005) Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 122:3–25

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Su J, Zheng G, Jian L, Zhang G, Wang H, Xie L, Zhang R (2013) Correction: patterns of expression in the matrix proteins responsible for nucleation and growth of aragonite crystals in flat pearls of Pinctada fucata. PLoS One 8:e66564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin J, Patel SR, Cheng X, Cho EA, Levitan I, Ullenbruch M, Phan SH, Park JM, Dressler GR (2005) Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 11:387–393

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2012) Analysis of relative gene expression data using real-time quantitative PCR and the 2–△△CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lowe CJ (2008) Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii. Philos Trans R Soc Lond B Biol Sci 363:1569–1578

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe CJ, Terasaki M, Wu M, Jr RMF, Runft L, Kwan K, Haigo S, Aronowicz J, Lander E, Gruber C (2006) Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 4:e291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Márquez-Aliaga A, Jiménez-Jiménez AP, Checa AG, Hagdorn H (2005) Early oysters and their supposed Permian ancestors. Palaeogeogr Palaeoclimatol Palaeoecol 229:127–136

    Article  Google Scholar 

  • Martin-Duran JM, Vellutini BC, Hejnol A (2016) Embryonic chirality and the evolution of spiralian left-right asymmetries. Philos Trans R Soc Lond B Biol Sci 371(1710):20150411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meehan RR, Stancheva I (2001) DNA methylation and control of gene expression in vertebrate development. Essays Biochem 37:59–70

    Article  PubMed  CAS  Google Scholar 

  • Mercer DK, Iqbal M, Miller P, Mccarthy AJ (1996) Screening actinomycetes for extracellular peroxidase activity. Appl Environ Microbiol 62:2186–2190

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mercola M (2003) Left-right asymmetry: nodal points. J Cell Sci 116:3251–3257

    Article  PubMed  CAS  Google Scholar 

  • Mercola M, Levin M (2001) Left-right asymmetry determination in vertebrates. Annu Rev Cell Dev Biol 17:779–805

    Article  PubMed  CAS  Google Scholar 

  • Mika A, Minibayeva F, Beckett R, Lüthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3:173–193

    Article  CAS  Google Scholar 

  • Miyamoto H, Kajihara K (2005) Conserved ribosomal protein sequences S5, S18, S27, S30 in the Pacific oyster Crassostrea gigas and Crassostrea virginica. Memoirs of the School of Biology-Oriented Science and Technology of Kinki University, vol 16, pp 1–5

  • Namigai EK, Kenny NJ, Shimeld SM (2014) Right across the tree of life: the evolution of left–right asymmetry in the Bilateria. Genesis 52:458–470

    Article  PubMed  CAS  Google Scholar 

  • Pai VP, Vandenberg LN, Blackiston D, Levin M (2012) Neurally derived tissues in Xenopus laevis embryos exhibit a consistent bioelectrical left-right asymmetry. Stem Cells Int 2012:353491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer AR (2009) Animal asymmetry. Curr Biol 19:R473–R477

    Article  PubMed  CAS  Google Scholar 

  • Paps J, Xu F, Zhang G, Holland PWH (2015) Reinforcing the egg-timer: recruitment of novel Lophotrochozoa homeobox genes to early and late development in the Pacific oyster. Genome Biol Evol 7:677–688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piedra ME, Icardo JM, Albajar M, Rodriguez-Rey JC, Ros MA (1998) Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94:319–324

    Article  PubMed  CAS  Google Scholar 

  • Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, Von BH, Huehn J (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38:1654–1663

    Article  PubMed  CAS  Google Scholar 

  • Ponder WF, Lindberg DR (2010) Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool J Linnean Soc 119:83–265

    Article  Google Scholar 

  • Razin A, Kantor B (2005) DNA methylation in epigenetic control of gene expression. Prog Mol Subcell Biol 38:151–167

  • Robinson MD, Mccarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  CAS  Google Scholar 

  • Ryan AK, Blumberg B, Rodriguezesteban C, Yoneitamura S, Tamura K, Tsukui T, Peña JDL, Sabbagh W, Greenwald J, Choe S (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394:545–551

    Article  PubMed  CAS  Google Scholar 

  • Tang HK, Chao LY, Saunders GF (1997) Functional analysis of paired box missense mutations in the PAX6 gene. Hum Mol Genet 6:381–386

    Article  PubMed  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan J, Oliver VF, Wang G, Zhu H, Zack DJ, Merbs SL, Qian J (2015) Characterization of tissue-specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation. BMC Genomics 16:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Wu C, Xu C, Yu WC, Li Z, Li Y, Guo T, Wang X (2015a) Voltage-gated potassium ion channel may play a major role in the settlement of Pacific oyster ( Crassostrea gigas ) larvae. Aquaculture 442:48–50

    Article  CAS  Google Scholar 

  • Wang S, Lv J, Zhang L, Dou J, Sun Y, Li X, Fu X, Dou H, Mao J, Hu X, Bao Z (2015b) MethylRAD: a simple and scalable method for genome-wide DNA methylation profiling using methylation-dependent restriction enzymes. Open Biol 5. https://doi.org/10.1098/rsob.150130

  • Wang X, Li L, Zhu Y, Du Y, Song X, Chen Y, Huang R, Que H, Fang X, Zhang G (2013) Oyster shell proteins originate from multiple organs and their probable transport pathway to the Shell formation front. PLoS One 8:e66522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss G, Cottrell S, Distler J, Schatz P, Kristiansen G, Ittmann M, Haefliger C, Lesche R, Hartmann A, Corman J, Wheeler T (2009) DNA methylation of the PITX2 gene promoter region is a strong independent prognostic marker of biochemical recurrence in patients with prostate cancer after radical prostatectomy. J Urol 181:1678–1685

    Article  PubMed  CAS  Google Scholar 

  • Wlizla, M. (2011). Evolution of nodal signaling in deuterostomes: insights from Saccoglossus kowalevskii. Dissertations & Theses - Gradworks

  • Yano M, Nagai K, Morimoto K, Miyamoto H (2006) Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 144:254–262

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Peter W H Holland and Jordi Paps for helpful suggestions upon critical reading of the manuscript, as well as Guofan Zhang for helpful discussion regarding the experimental design.

Funding

This research was supported by the Modern Agricultural Industry Technology System of Shandong Province, China (SDAIT-14-03), the Key R & D Program of Yantai City, China (No. 2017ZH054), the Innovation Plan for Marine/Fishery Science and Technology of Shandong Province, China (No. 2017YY03), the National Natural Science Foundation of China (Nos. 31302181, 41776152), the Shandong Provincial Natural Science Foundation, China (Nos. ZR2013CM026, ZR2017BC058), and A Project of Shandong Province Higher Educational Science and Technology Program (No. J17KA129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotong Wang.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(XLSX 37 kb)

ESM 2

(DOCX 66 kb)

ESM 3

(XLSX 62 kb)

ESM 4

(XLSX 87 kb)

ESM 5

(XLSX 12 kb)

Table S7

Different expressed miRNA related with TGF−β pathway. (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Xu, F., Wang, Y. et al. The Molecular Differentiation of Anatomically Paired Left and Right Mantles of the Pacific Oyster Crassostrea gigas. Mar Biotechnol 20, 425–435 (2018). https://doi.org/10.1007/s10126-018-9806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9806-8

Keywords

Navigation