Marine Biotechnology

, Volume 20, Issue 2, pp 220–245 | Cite as

Proteome and Transcriptome Analysis of Ovary, Intersex Gonads, and Testis Reveals Potential Key Sex Reversal/Differentiation Genes and Mechanism in Scallop Chlamys nobilis

  • Yu Shi
  • Wenguang Liu
  • Maoxian He
Original Article


Bivalve mollusks exhibit hermaphroditism and sex reversal/differentiation. Studies generally focus on transcriptional profiling and specific genes related to sex determination and differentiation. Few studies on sex reversal/differentiation have been reported. A combination analysis of gonad proteomics and transcriptomics was conducted on Chlamys nobilis to provide a systematic understanding of sex reversal/differentiation in bivalves. We obtained 4258 unique peptides and 93,731 unigenes with good correlation between messenger RNA and protein levels. Candidate genes in sex reversal/differentiation were found: 15 genes differentially expressed between sexes were identified and 12 had obvious sexual functions. Three novel genes (foxl2, β-catenin, and sry) were expressed highly in intersex individuals and were likely involved in the control of gonadal sex in C. nobilis. High expression of foxl2 or β-catenin may inhibit sry and activate 5-HT receptor and vitellogenin to maintain female development. High expression of sry may inhibit foxl2 and β-catenin and activate dmrt2, fem-1, sfp2, sa6, Amy-1, APCP4, and PLK to maintain male function. High expression of sry, foxl2, and β-catenin in C. nobilis may be involved in promoting and maintaining sex reversal/differentiation. The downstream regulator may not be dimorphic expressed genes, but genes expressed in intersex individuals, males and females. Different expression patterns of sex-related genes and gonadal histological characteristics suggested that C. nobilis may change its sex from male to female. These findings suggest highly conserved sex reversal/differentiation with diverged regulatory pathways during C. nobilis evolution. This study provides valuable genetic resources for understanding sex reversal/differentiation (intersex) mechanisms and pathways underlying bivalve reproductive regulation.


Proteome Transcriptome Sex reversal/differentiation Intersex individual Chlamys nobilis 



We would like to thank the Shanghai Applied Protein Technology Co., Ltd. for providing the technical support.

Funding Information

This project was supported by the Science and Technology Program of Guangzhou, China (201707010180), and the Science and Technology Planning Project of Guangdong Province, China (2014B030301064).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10126_2018_9800_MOESM1_ESM.xlsx (339 kb)
Supplementary Table S1 (XLSX 339 kb)
10126_2018_9800_MOESM2_ESM.xlsx (361 kb)
Supplementary Table S2 (XLSX 360 kb)
10126_2018_9800_MOESM3_ESM.docx (13 kb)
Supplementary Table S3 (DOCX 13 kb)
10126_2018_9800_MOESM4_ESM.docx (14 kb)
Supplementary Table S4 (DOCX 13 kb)
10126_2018_9800_MOESM5_ESM.xlsx (35 kb)
Supplementary Table S5 (XLSX 35 kb)
10126_2018_9800_MOESM6_ESM.xlsx (106 kb)
Supplementary Table S6 (XLSX 106 kb)


  1. Adell T, Muller WE (2004) Isolation and characterization of five Fox (Forkhead) genes from the sponge Suberites domuncula. Gene 334:35–46CrossRefPubMedGoogle Scholar
  2. Akasaka M, Harada Y, Sawada H (2010) Vitellogenin C-terminal fragments participate in fertilization as egg-coat binding partners of sperm trypsin-like proteases in the ascidian Halocynthia roretzi. Biochem Biophys Res Commun 392:479–484CrossRefPubMedGoogle Scholar
  3. Akasaka M, Kato KH, Kitajima K, Sawada H (2013) Identification of novel isoforms of vitellogenin expressed in ascidian eggs. J Exp Zool B Mol Dev Evol 320:118–128CrossRefPubMedGoogle Scholar
  4. Anderson K, Burnell FJ, Roiko A, Andrew M, Connor WAO, Elizur A (2010) Development of a method for identifying elevated vitellogenin gene expression in the Sydney rock oyster (Saccostrea glomerata) as an indicator of endocrine disruption on the Sunshine Coast. Ecol Manag Restor 11:143–146CrossRefGoogle Scholar
  5. Arnaud-Haond S, Monteforte M, Blanc F, Bonhomme F (2003) Evidence for male-biased effective sex ratio and recent step-by-step colonization in the bivalve Pinctada mazatlanica. J Evol Biol 16:790–796CrossRefPubMedGoogle Scholar
  6. Beukeboom LW, Perrin N (2014) The evolution of sex determination. Oxford, London.CrossRefGoogle Scholar
  7. Bordukalo-Niksic T, Mokrovic G, Stefulj J, Zivin M, Jernej B, Cicin-Sain L (2010) 5HT-1A receptors and anxiety-like behaviours: studies in rats with constitutionally upregulated/downregulated serotonin transporter. Behav Brain Res 213:238–245CrossRefPubMedGoogle Scholar
  8. Boutet I, Moraga D, Marinovic L, Obreque J, Chavez-Crooker P (2008) Characterization of reproduction-specific genes in a marine bivalve mollusc: influence of maturation stage and sex on mRNA expression. Gene 407:130–138CrossRefPubMedGoogle Scholar
  9. Cheng W, Ip YT, Xu ZS (2013) Gudu, an armadillo repeat-containing protein, is required for spermatogenesis in Drosophila. Gene 531:294–300CrossRefPubMedGoogle Scholar
  10. Dheilly NM, Lelong C, Huvet A, Kellner K, Dubos MP, Riviere G, Boudry P, Favrel P (2012) Gametogenesis in the Pacific oyster Crassostrea gigas: a microarrays-based analysis identifies sex and stage specific genes. PLoS One 7:e36353CrossRefPubMedPubMedCentralGoogle Scholar
  11. Doniach T, Hodgkin J (1984) A sex-determining gene, fem-1, required for both male and hermaphrodite development in Caenorhabditis elegans. Dev Biol 106:223–235CrossRefPubMedGoogle Scholar
  12. Finn RN, Kristoffersen BA (2007) Vertebrate vitellogenin gene duplication in relation to the “3R hypothesis”: correlation to the pelagic egg and the oceanic radiation of teleosts. PLoS One 2:e169CrossRefPubMedPubMedCentralGoogle Scholar
  13. Furusawa M, Ohnishi T, Taira T, Iguchiariga SM, Ariga H (2001) AMY-1, a c-Myc-binding protein, is localized in the mitochondria of sperm by association with S-AKAP84, an anchor protein of cAMP-dependent protein kinase. J Biol Chem 276:36647–36651CrossRefPubMedGoogle Scholar
  14. Gagnidze K, Weil ZM, Pfaff DW (2010) Histone modifications proposed to regulate sexual differentiation of brain and behavior. BioEssays 32:932–939CrossRefPubMedGoogle Scholar
  15. Gamble T, Zarkower D (2012) Sex determination. Curr Biol 22:R257–R262CrossRefPubMedGoogle Scholar
  16. Garcia JLA, Munro ES, Monte MM, Fourrier M, Whitelaw J, Smail DA, Ellis AE (2010) Atlantic salmon (Salmo salar L.) serum vitellogenin neutralises infectivity of infectious pancreatic necrosis virus (IPNV). Fish Shellfish Immunol 29:293–297CrossRefPubMedGoogle Scholar
  17. Garcia-Ortiz JE, Pelosi E, Omari S, Nedorezov T, Piao Y, Karmazin J, Uda M, Cao A, Cole SW, Forabosco A, Schlessinger D, Ottolenghi C (2009) Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. BMC Dev Biol 9:36CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gineitis A, Zalenskaya IA, Yau PM, Bradbury EM, Zalensky AO (2000) Human sperm telomere-binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol 151:1591–1598CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gladfelter AS, Pringle JR, Lew DJ (2001) The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol 4:681–689CrossRefPubMedGoogle Scholar
  20. Green AR, Backus LI (1990) Animal models of serotonin behavior. Ann N Y Acad Sci 600:237–248CrossRefPubMedGoogle Scholar
  21. Guerrier P, Leclercdavid C, Moreau M (1993) Evidence for the involvement of internal calcium stores during serotonin-induced meiosis reinitiation in oocytes of the bivalve mollusc Ruditapes philippinarum. Dev Biol 159:474–484CrossRefPubMedGoogle Scholar
  22. Hamida L, Medhioub M, Cochard JC, Pennec ML (2004) Evaluation of the effects of serotonin (5-HT) on oocyte competence in Ruditapes decussatus (Bivalvia, Veneridae). Aquaculture 239:413–420CrossRefGoogle Scholar
  23. Hanover JA, Love DC, Prinz WA (2009) Calmodulin-driven nuclear entry: trigger for sex determination and terminal differentiation. J Biol Chem 284:12593–12597CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hodgkin J (1986) Sex determination in the nematode C. elegans: analysis of tra-3 suppressors and characterization of fem genes. Genetics 114:15–52PubMedPubMedCentralGoogle Scholar
  25. Hong CS, Park BY, Saintjeannet JP (2007) The function of Dmrt genes in vertebrate development: it is not just about sex. Dev Biol 310:1–9CrossRefPubMedGoogle Scholar
  26. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1999:138–148Google Scholar
  27. Kocer A, Pinheiro I, Pannetier M, Renault L, Parma P, Radi O, Kim K, Camerino G, Pailhoux E (2008) R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation. BMC Dev Biol 8:36–36CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kotaka M, Gover S, Vandeputte-Rutten L, Au SW, Lam VM, Adams MJ (2005) Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 61:495–504CrossRefPubMedGoogle Scholar
  29. Krantic S, Guerrier P, Dube F (1993) Meiosis reinitiation in surf clam oocytes is mediated via a 5-hydroxytryptamine5 serotonin membrane receptor and a vitelline envelope-associated high affinity binding site. J Biol Chem 268:7983–7989PubMedGoogle Scholar
  30. Landoni M, De Francesco A, Galbiati M, Tonelli C (2010) A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana. Plant Mol Biol 74:235–247CrossRefPubMedGoogle Scholar
  31. Li S, Ou XH, Wei L, Wang ZB, Zhang QH, Ouyang YC, Hou Y, Schatten H, Sun QY (2012) Septin 7 is required for orderly meiosis in mouse oocytes. Cell Cycle 11:3211–3218CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li HL, Zhang ZF, Bi Y, Yang DD, Zhang LT, Liu JG (2014) Expression characteristics of beta-catenin in scallop Chlamys farreri gonads and its role as a potential upstream gene of Dax1 through canonical Wnt signalling pathway regulating the spermatogenesis. PLoS One 9:e115917CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li Y, Zhang LL, Sun Y, Ma XL, Wang J, Li RJ, Zhang MW, Wang S, Hu XL, Bao ZM (2016) Transcriptome sequencing and comparative analysis of ovary and testis identifies potential key sex-related genes and pathways in scallop Patinopecten yessoensis. Mar Biotechnol 18:453–465CrossRefPubMedGoogle Scholar
  34. Liu XL, Zhang ZF, Shao MY, Liu JG, Muhammad F (2012) Sexually dimorphic expression of foxl2 during gametogenesis in scallop Chlamys farreri, conserved with vertebrates. Dev Genes Evol 222:279–286CrossRefPubMedGoogle Scholar
  35. Liu Y, Hui M, Cui Z, Luo D, Song C, Li Y, Liu L (2015) Comparative transcriptome analysis reveals sex-biased gene expression in juvenile Chinese mitten crab Eriocheir sinensis. PLoS One 10:e0133068CrossRefPubMedPubMedCentralGoogle Scholar
  36. Longtine MS, Bi E (2003) Regulation of septin organization and function in yeast. Trends Cell Biol 13:403–409CrossRefPubMedGoogle Scholar
  37. Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp J, Akira S, Wiegand M, Hochrein H, O’Keeffe M, Mann M (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32:279–289CrossRefPubMedGoogle Scholar
  38. Markov GV, Tavares R, Dauphin-Villemant C, Demeneix BA, Baker ME, Laudet V (2009) Independent elaboration of steroid hormone signaling pathways in metazoans. Proc Natl Acad Sci U S A 106:11913–11918.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Martinez G, Mettifogo L, Perez MA, Callejas CR (2007) A method to eliminate self-fertilization in a simultaneous hermaphrodite scallop. 1. Effects on growth and survival of larvae and juveniles. Aquaculture 273:459–469CrossRefGoogle Scholar
  40. Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476:101–104.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Matson CK, Zarkower D (2012) Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 13:163–174CrossRefPubMedPubMedCentralGoogle Scholar
  42. Matsumoto T, Yamano K, Kitamura M, Hara A (2008) Ovarian follicle cells are the site of vitellogenin synthesis in the Pacific abalone Haliotis discus hannai. Comp Biochem Physiol A Mol Integr Physiol 149:293–298CrossRefPubMedGoogle Scholar
  43. Matsumoto T, Nakamura AM, Mori K, Kayano T (2009) Molecular characterization of a cDNA encoding putative vitellogenin from the Pacific oyster Crassostrea gigas. Zool Sci 20:37–42CrossRefGoogle Scholar
  44. Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M (2013) Reproduction-related genes in the pearl oyster genome. Zool Sci 30:826–850CrossRefPubMedGoogle Scholar
  45. Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:689–699CrossRefGoogle Scholar
  46. Naimi A, Martinez AS, Specq ML, Diss B, Mathieu M, Sourdaine P (2009) Molecular cloning and gene expression of Cg-Foxl2 during the development and the adult gametogenetic cycle in the oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 154:134–142CrossRefPubMedGoogle Scholar
  47. Ni JB, Zeng Z, Kong DZ, Hou L, Huang HQ, Ke CH (2014) Vitellogenin of Fujian oyster, Crassostrea angulata: synthesized in the ovary and controlled by estradiol-17 beta. Gen Comp Endocrinol 202:35–43CrossRefPubMedGoogle Scholar
  48. Osada M, Mori K, Nomura T (1992) In vitro effects of estrogen and serotonin on release of eggs from the ovary of the scallop. Nippon Suisan Gakkaishi 58:223–227CrossRefGoogle Scholar
  49. Osada M, Harata M, Kishida M, Kijima A (2004) Molecular cloning and expression analysis of vitellogenin in scallop, Patinopecten yessoensis (Bivalvia, Mollusca). Mol Reprod Dev 67:273–281CrossRefPubMedGoogle Scholar
  50. Paz M, Torrado M, Korochkin LI, Mikhailov AT (2005) Esterase-like and fibronectin-like polypeptides share similar sex-cell-biased patterns in the gonad of hermaphroditic and gonochoric species of bivalve mollusks. Cell Tissue Res 322:475–489CrossRefPubMedGoogle Scholar
  51. Penman DJ, Piferrer F (2008) Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev Fish Sci 16:16–34CrossRefGoogle Scholar
  52. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652CrossRefPubMedGoogle Scholar
  53. Piferrer F, Guiguen Y (2008) Fish Gonadogenesis. Part II: molecular biology and genomics of sex differentiation. Rev Fish Sci 16:35–55CrossRefGoogle Scholar
  54. Puinean AM, Rotchell JM (2006) Vitellogenin gene expression as a biomarker of endocrine disruption in the invertebrate, Mytilus edulis. Mar Environ Res 62:S211–S214CrossRefPubMedGoogle Scholar
  55. Qin Z, Li Y, Sun D, Shao M, Zhang Z (2012) Cloning and expression analysis of the vitellogenin gene in the scallop Chlamys farreri and the effects of estradiol-17β on its synthesis. Invertebr Biol 131:312–321CrossRefGoogle Scholar
  56. Reddiah K (1962) The sexuality and spawning of Manx pectinids. J Mar Biol Assoc UK 42:683–703CrossRefGoogle Scholar
  57. Santerre C, Sourdaine P, Adeline B, Martinez AS (2014) Cg-SoxE and Cg-beta-catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol. 167:68–76CrossRefPubMedGoogle Scholar
  58. Shi Y, Wang Q, He MX (2014) Molecular identification of dmrt2 and dmrt5 and effect of sex steroids on their expressions in Chlamys nobilis. Aquaculture 426:21–30CrossRefGoogle Scholar
  59. Shimeld SM, Boyle MJ, Brunet T, Luke GN, Seaver EC (2010) Clustered fox genes in lophotrochozoans and the evolution of the bilaterian fox gene cluster. Dev Biol 340:234–248CrossRefPubMedGoogle Scholar
  60. Sironen A, Hansen J, Thomsen B, Andersson M, Vilkki J, Toppari J, Kotaja N (2010) Expression of SPEF2 during mouse spermatogenesis and identification of IFT20 as an interacting protein. Biol Reprod 82:580–590CrossRefPubMedGoogle Scholar
  61. Teaniniuraitemoana V, Huvet A, Levy P, Klopp C, Lhuillier E, Gaertner-Mazouni N, Gueguen Y, Le Moullac G (2014) Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes. BMC Genomics 15:491CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tong Y, Zhang Y, Huang JM, Xiao S, Zhang YH, Li J, Chen JH, Yu ZN (2015) Transcriptomics analysis of Crassostrea hongkongensis for the discovery of reproduction-related genes. PLoS One 10:e0134280CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tranter DJ (1958) Reproduction in Australian pearl oysters (Lamellibranchia). III. Pinctada albina (Lamarck): breeding season and sexuality. Mar Freshw Res 9:135–143CrossRefGoogle Scholar
  64. Tsai HW, Grant PA, Rissman EF (2009) Sex differences in histone modifications in the neonatal mouse brain. Epigenetics 4:47–53CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tu Q, Brown CT, Davidson EH, Oliveri P (2006) Sea urchin Forkhead gene family: phylogeny and embryonic expression. Dev Biol 300:49–62CrossRefPubMedGoogle Scholar
  66. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter NI, Riethmacher D, Schutz G, Cooney AJ, Lovell-Badge R, Treier M (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130–1142CrossRefPubMedGoogle Scholar
  67. Veitia RA (2010) FOXL2 versus SOX9: a lifelong “battle of the sexes”. BioEssays 32:375–380CrossRefPubMedGoogle Scholar
  68. Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O’Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41:D1063–D1069CrossRefPubMedGoogle Scholar
  69. Wang Q, He MX (2014) Molecular characterization and analysis of a putative 5-HT receptor involved in reproduction process of the pearl oyster Pinctada fucata. Gen Comp Endocrinol 204:71–79CrossRefPubMedGoogle Scholar
  70. Wang G, Hu CQ, Jiang T, Luo J, Hu J, Ling SH, Liu M, Xing GQ (2010) Overexpression of serotonin receptor and transporter mRNA in blood leukocytes of antipsychotic-free and antipsychotic-naïve schizophrenic patients: gender differences. Schizophr Res 121:160–171CrossRefPubMedGoogle Scholar
  71. Wang S, Wang Y, Ma J, Ding Y, Zhang S (2011) Phosvitin plays a critical role in the immunity of zebrafish embryos via acting as a pattern recognition receptor and an antimicrobial effector. J Biol Chem 286:22653–22664CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D (2014) Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J 33:1304–1320PubMedPubMedCentralGoogle Scholar
  73. Williams VN, Reading BJ, Hiramatsu N, Amano H, Glassbrook N, Hara A, Sullivan CV (2014) Multiple vitellogenins and product yolk proteins in striped bass, Morone saxatilis: molecular characterization and processing during oocyte growth and maturation. Fish Physiol Biochem 40:395–415CrossRefPubMedGoogle Scholar
  74. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362CrossRefPubMedGoogle Scholar
  75. Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang SC, Sun YN, Pang QX, Shi XD (2005) Hemagglutinating and antibacterial activities of vitellogenin. Fish Shellfish Immunol 19:93–95CrossRefPubMedGoogle Scholar
  77. Zhang Z, Tang WX, Zhou R, Shen XN, Wei ZY, Patel AM, Povlishock JT, Bennett J, Strauss JF (2007) Accelerated mortality from hydrocephalus and pneumonia in mice with a combined deficiency of SPAG6 and SPAG16L reveals a functional interrelationship between the two central apparatus proteins. Cell Motil Cytoskeleton 64:360–376CrossRefPubMedGoogle Scholar
  78. Zhang N, Xu F, Guo XM (2014) Genomic analysis of the Pacific oyster (Crassostrea gigas) reveals possible conservation of vertebrate sex determination in a mollusc. G3-Genes Genom Genet 4:2207–2217Google Scholar
  79. Zheng H, Zhang Q, Liu H, Liu W, Sun Z, Li S, Zhang T (2012) Cloning and expression of vitellogenin (Vg) gene and its correlations with total carotenoids content and total antioxidant capacity in noble scallop Chlamys nobilis (bivalve: Pectinidae). Aquaculture 366:46–53CrossRefGoogle Scholar
  80. Zhou L, Charkraborty T, Yu X, Wu L, Liu G, Mohapatra S, Wang D, Nagahama Y (2012) R-spondins are involved in the ovarian differentiation in a teleost, medaka (Oryzias latipes). BMC Dev Biol 12:36–36CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina

Personalised recommendations