Advertisement

Marine Biotechnology

, Volume 20, Issue 1, pp 60–74 | Cite as

Phytochemical Analysis and Evaluation of the Antioxidant, Anti-Inflammatory, and Antinociceptive Potential of Phlorotannin-Rich Fractions from Three Mediterranean Brown Seaweeds

  • Amal AbdelhamidEmail author
  • Meriem Jouini
  • Haifa Bel Haj Amor
  • Zeineb Mzoughi
  • Mehdi Dridi
  • Rafik Ben Said
  • Abderrahman Bouraoui
Original Article

Abstract

Phlorotannins, phenolic compounds produced exclusively by seaweeds, have been reported to possess various pharmacological properties. However, there have been few works on these compounds from Mediterranean seaweeds. In this study, we investigated the phytochemical analysis and pharmacological potential of phlorotannin-rich fractions from three brown seaweeds collected along the Tunisia coast: Cystoseira sedoides (PHT-SED), Cladostephus spongeosis (PHT-CLAD), and Padina pavonica (PHT-PAD). Phytochemical determinations showed considerable differences in total phenolic content (TPC) and phlorotannin content (PHT). The highest TPC level (26.45 mg PGE/g dry material (Dm)) and PHT level (873.14 μg PGE/g Dm) were observed in C. sedoides. The antioxidant properties of these three fractions assessed by three different methods indicated that C. sedoides displayed the highest total antioxidant activity among the three species (71.30 mg GAE/g Dm), as well as the free radical scavenging activity with the lowest IC50 value in both DPPH (27.7 μg/mL) and ABTS (19.1 μg/mL) assays. Furthermore, the pharmacological screening of the anti-inflammatory potential of these fractions using in vivo models, in comparison to reference drugs, established a remarkable activity of PHT-SED at the dose of 100 mg/kg; the inhibition percentages of ear edema in mice model and paw edema in rats model were of 82.55 and 81.08%, respectively. The content of malondialdehyde (MDA) in liver tissues has been quantified, and PHT-SED was found to remarkably increase the lipid peroxidation in rat liver tissues. In addition, in two pain mice models, PHT-SED displayed a profound antinociceptive activity at 100 mg/kg and has proved a better analgesic activity when used in combination with the opioid drug, tramadol.

Keywords

Phlorotannins Brown seaweed Phytochemical Radical scavenging activity Anti-inflammatory activity Antinociceptive activity 

Abbreviations

SLE

solid liquid extraction

PHT

phlorotannins

RSA

radical scavenging activity

PGE

phloroglucinol equivalent

GAE

gallic acid equivalent

Dm

dry material

DPPH

2,2-diphenyl-1-picrylhydrazyl

ABTS

2,2′-azinobis-3-ethylbenzthiazoline-6-sulphonic acid

IC50

half maximal inhibitory concentration

MDA

malondialdehyde

Notes

Funding Information

This study was financially supported by the Ministry of Higher Education and Scientific Research of Tunisia (Grant no. LR12ES09).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Ahn G-N, Kim K-N, Cha S-H, Song CB, Lee J, Heo MS, Yeo IK, Lee NH, Jee YH, Kim JS, Heu MS, Jeon YJ (2007) Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Eur Food Res Technol 226(1-2):71–79CrossRefGoogle Scholar
  2. Alam MN, Bristi NJ, Rafiquzzaman M (2013) Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 21(2):143–152CrossRefPubMedGoogle Scholar
  3. Alimi H, Hfaiedh N, Bouoni Z, Sakly M, Ben Rhouma K (2011) Evaluation of antioxidant and antiulcerogenic activities of Opuntia ficus indica f. inermis flowers extract in rats. Environ Toxicol Pharmacol 32(3):406–416CrossRefPubMedGoogle Scholar
  4. Ananthi S, Gayathri V, Chandronitha C et al (2011) Free radical scavenging and anti-inflammatory potential of a marine brown alga Turbinaria ornata (Turner) J. Agardh. Indian J Mar Sci 40:664–670Google Scholar
  5. Bai R, Shi Q, Liang Z, Yoon Y, Han Y, Feng A, Liu S, Oum Y, Yun CC, Shim H (2017) Development of CXCR4 modulators by virtual HTS of a novel amide-sulfamide compound library. Eur J Med Chem 126:464–475CrossRefPubMedGoogle Scholar
  6. Balboa EM, Conde E, Moure A, Falqué E, Domínguez H (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138(2-3):1764–1785CrossRefPubMedGoogle Scholar
  7. Barbosa M, Valentão P, Andrade PB (2014) Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar Drugs 12(9):4934–4972CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blanc N, Hauchard D, Audibert L, Gall EA (2011) Radical-scavenging capacity of phenol fractions in the brown seaweed Ascophyllum nodosum: an electrochemical approach. Talanta 84(2):513–518CrossRefPubMedGoogle Scholar
  9. Brand-Williams W, Cuvelier M-E, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30CrossRefGoogle Scholar
  10. Breton F, Cérantola S, Gall EA (2011) Distribution and radical scavenging activity of phenols in Ascophyllum nodosum (Phaeophyceae). J Exp Mar Biol Ecol 399(2):167–172CrossRefGoogle Scholar
  11. Brito TV, Prudêncio RS, Sales AB et al (2013) Anti-inflammatory effect of a sulphated polysaccharide fraction extracted from the red algae Hypnea musciformis via the suppression of neutrophil migration by the nitric oxide signalling pathway. J Pharm Pharmacol 65(5):724–733CrossRefPubMedGoogle Scholar
  12. Cannon CZ, Kissling GE, Hoenerhoff MJ, King-Herbert AP, Blankenship-Paris T (2010) Evaluation of dosages and routes of administration of tramadol analgesia in rats using hot-plate and tail-flick tests. Lab Anim 39(11):342–351CrossRefGoogle Scholar
  13. Chiu YJ, Huang T-H, Chiu C-S, Lu T-C, Chen Y-W, Peng W-H, Chen CY (2012) Analgesic and anti-inflammatory activities of the aqueous extract from Plectranthus amboinicus (Lour). Spreng. both in vitro and in vivo. Evid Based Complement Alternat Med 2012:508137Google Scholar
  14. Cho S, Yang H, Jeon Y-J, Lee CJ, Jin YH, Baek NI, Kim D, Kang SM, Yoon M, Yong H, Shimizu M, Han D (2012) Phlorotannins of the edible brown seaweed Ecklonia cava Kjellman induce sleep via positive allosteric modulation of gamma-aminobutyric acid type A–benzodiazepine receptor: a novel neurological activity of seaweed polyphenols. Food Chem 132(3):1133–1142CrossRefPubMedGoogle Scholar
  15. Cong HH, Khaziakhmetova VN, Zigashina LE (2015) Rat paw oedema modeling and NSAIDs: timing of effects. Int J Risk Saf Med 27(s1):S76–S77CrossRefPubMedGoogle Scholar
  16. Connan S, Delisle F, Deslandes E, Ar Gall E (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:39–46CrossRefGoogle Scholar
  17. Connan S, Deslandes E, Gall EA (2007) Influence of day–night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds. J Exp Mar Biol Ecol 349(2):359–369CrossRefGoogle Scholar
  18. Corona G, Ji Y, Anegboonlap P, Hotchkiss S, Gill C, Yaqoob P, Spencer JPE, Rowland I (2016) Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on inflammatory markers. Br J Nutr 115(07):1240–1253CrossRefPubMedGoogle Scholar
  19. Cruces E, Rojas-Lillo Y, Ramirez-Kushel E, Atala E, López-Alarcón C, Lissi E, Gómez I (2016) Comparison of different techniques for the preservation and extraction of phlorotannins in the kelp Lessonia spicata (Phaeophyceae): assays of DPPH, ORAC-PGR, and ORAC-FL as testing methods. J Appl Phycol 28(1):573–580CrossRefGoogle Scholar
  20. D’Orazio N, Gammone MA, Gemello E, de Girolamo M, Cusenza S, Riccioni G (2012) Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar Drugs 10(12):812–833CrossRefPubMedPubMedCentralGoogle Scholar
  21. De Alencar DB, de Carvalho FCT, Rebouças RH et al (2016) Bioactive extracts of red seaweeds Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential. Asian Pac J Trop Med 9(4):372–379CrossRefPubMedGoogle Scholar
  22. De Quirós AR-B, Frecha-Ferreiro S, Vidal-Perez AM, López-Hernández J (2010) Antioxidant compounds in edible brown seaweeds. Eur Food Res Technol 231:495–498CrossRefGoogle Scholar
  23. Eddouks M, Chattopadhyay D, Zeggwagh NA (2012) Animal models as tools to investigate antidiabetic and anti-inflammatory plants. Evid Based Complement Alternat Med 2012:142087PubMedPubMedCentralGoogle Scholar
  24. Fernando IS, Nah J-W, Jeon Y-J (2016) Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol 48:22–30CrossRefPubMedGoogle Scholar
  25. Ferreres F, Lopes G, Gil-Izquierdo A, Andrade P, Sousa C, Mouga T, Valentão P (2012) Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties. Mar Drugs 10(12):2766–2781CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hagerman AE (2002) Hydrolyzable tannin structural chemistry. Tannin Handbook. Miami University, Miami. (http://www.users.muohio.edu/hagermae/tannin.pdf). Accessed 21 June 2016
  27. Heffernan N, Brunton NP, FitzGerald RJ, Smyth TJ (2015) Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar Drugs 13(1):509–528CrossRefPubMedPubMedCentralGoogle Scholar
  28. Heimler D, Isolani L, Vignolini P, Romani A (2009) Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chem 114(3):765–770CrossRefGoogle Scholar
  29. Jung HA, Oh SH, Choi JS (2010) Molecular docking studies of phlorotannins from Eisenia bicyclis with BACE1 inhibitory activity. Bioorg Med Chem Lett 20(11):3211–3215CrossRefPubMedGoogle Scholar
  30. Jung HA, Jin SE, Ahn BR, Lee CM, Choi JS (2013) Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264. 7 macrophages. Food Chem Toxicol 59:199–206CrossRefPubMedGoogle Scholar
  31. Jung YS, Cho Y-H, Han CH (2014) Anti-inflammatory effect of phlorotannin on chronic nonbacterial prostatitis in a rat model. Korean J Urogenit Tract Infect Inflamm 9(2):86–92CrossRefGoogle Scholar
  32. Kang M-C, Kim E-A, Kang S-M, Wijesinghe WAJP, Yang X, Kang NL, Jeon YJ (2012a) Thermostability of a marine polyphenolic antioxidant dieckol, derived from the brown seaweed Ecklonia cava. Algae 27(3):205–213CrossRefGoogle Scholar
  33. Kang S-M, Cha S-H, Ko J-Y, Kang MC, Kim D, Heo SJ, Kim JS, Heu MS, Kim YT, Jung WK, Jeon YJ (2012b) Neuroprotective effects of phlorotannins isolated from a brown alga, Ecklonia cava, against H2O2-induced oxidative stress in murine hippocampal HT22 cells. Environ Toxicol Pharmacol 34(1):96–105CrossRefPubMedGoogle Scholar
  34. Kang M-C, Wijesinghe W, Lee S-H et al (2013a) Dieckol isolated from brown seaweed Ecklonia cava attenuates type ІІ diabetes in db/db mouse model. Food Chem Toxicol 53:294–298CrossRefPubMedGoogle Scholar
  35. Kang Y-M, Eom S-H, Kim Y-M (2013b) Protective effect of phlorotannins from Eisenia bicyclis against lipopolysaccharide-stimulated inflammation in HepG2 cells. Environ Toxicol Pharmacol 35(3):395–401CrossRefPubMedGoogle Scholar
  36. Keyrouz R, Abasq ML, Bourvellec CL, Blanc N, Audibert L, ArGall E, Hauchard D (2011) Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany. Food Chem 126(3):831–836CrossRefGoogle Scholar
  37. Kim M-M, Kim S-K (2010) Effect of phloroglucinol on oxidative stress and inflammation. Food Chem Toxicol 48(10):2925–2933CrossRefPubMedGoogle Scholar
  38. Kim TH, Ku S-K, Lee T, Bae J-S (2012) Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo. Food Chem Toxicol 50(6):2188–2195CrossRefPubMedGoogle Scholar
  39. Kirke DA, Smyth TJ, Rai DK, Kenny O, Stengel DB (2017) The chemical and antioxidant stability of isolated low molecular weight phlorotannins. Food Chem 221:1104–1112CrossRefPubMedGoogle Scholar
  40. Koivikko R, Loponen J, Pihlaja K, Jormalainen V (2007) High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal 18(4):326–332CrossRefPubMedGoogle Scholar
  41. Koster R, Anderson M, De Beer EJ (1959) Acetic acid-induced analgesic screening. Fed Proc 18:412–417Google Scholar
  42. Kou J, Ni Y, Li N, Wang J, Liu L, Jiang ZH (2005) Analgesic and anti-inflammatory activities of total extract and individual fractions of Chinese medicinal ants Polyrhachis lamellidens. Biol Pharm Bull 28(1):176–180CrossRefPubMedGoogle Scholar
  43. Kristinsson HG, Miyashita K (2014) Marine antioxidants. Polyphenols and carotenoids from algae. In: Kristinsson HG (ed) Antioxidants and functional components in aquatic foods. John Wiley & Sons, Ltd, HobokenGoogle Scholar
  44. Lauritano C, Andersen JH, Hansen E et al (2016) Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci 3:68CrossRefGoogle Scholar
  45. Li Y, Qian Z-J, Ryu B et al (2009) Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg Med Chem 17(5):1963–1973CrossRefPubMedGoogle Scholar
  46. Li Y-X, Wijesekara I, Li Y, Kim S-K (2011) Phlorotannins as bioactive agents from brown algae. Process Biochem 46(12):2219–2224CrossRefGoogle Scholar
  47. Li Y-X, Li Y, Je J-Y, Kim S-K (2015) Dieckol as a novel anti-proliferative and anti-angiogenic agent and computational anti-angiogenic activity evaluation. Environ Toxicol Pharmacol 39(1):259–270CrossRefPubMedGoogle Scholar
  48. Lopes G, Sousa C, Silva LR, Pinto E, Andrade PB, Bernardo J, Mouga T, Valentão P (2012) Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS One 7(2):e31145CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lopes G, Andrade PB, Valentão P (2016) Phlorotannins: towards new pharmacological interventions for diabetes mellitus type 2. Molecules 22(1):56CrossRefGoogle Scholar
  50. Martínez I, Hipólito J, Castañeda T, Gerardo H (2013) Preparation and chromatographic analysis of phlorotannins. J Chromatogr Sci 51(8):825–838CrossRefPubMedGoogle Scholar
  51. Matanjun P, Mohamed S, Mustapha NM, Muhammad K, Ming CH (2008) Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J Appl Phycol 20(4):367–373CrossRefGoogle Scholar
  52. Montero L, Sánchez-Camargo AP, García-Cañas V, Tanniou A, Stiger-Pouvreau V, Russo M, Rastrelli L, Cifuentes A, Herrero M, Ibáñez E (2016) Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J Chromatogr A 1428:115–125CrossRefPubMedGoogle Scholar
  53. Murray M, Dordevic AL, Bonham MP, Ryan L (2017) Do marine algal polyphenols have antidiabetic, anti-hyperlipidaemic or anti-inflammatory effects in humans? A systematic review. Crit Rev Food Sci Nutr 1–16Google Scholar
  54. Norra I, Aminah A, Suri R (2016) Effects of drying methods, solvent extraction and particle size of Malaysian brown seaweed, Sargassum sp. on the total phenolic and free radical scavenging activity. Int Food Res J 23(4):1558–1563Google Scholar
  55. Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ (2011) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 126(3):1006–1012CrossRefGoogle Scholar
  56. Özkay ÜD, Can ÖD (2013) Anti-nociceptive effect of vitexin mediated by the opioid system in mice. Pharmacol Biochem Behav 109:23–30CrossRefGoogle Scholar
  57. Pádua D, Rocha E, Gargiulo D, Ramos AA (2015) Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem Lett 14:91–98CrossRefGoogle Scholar
  58. Parys S, Rosenbaum A, Kehraus S, Reher G, Glombitza KW, König GM (2007) Evaluation of quantitative methods for the determination of polyphenols in algal extracts. J Nat Prod 70(12):1865–1870CrossRefPubMedGoogle Scholar
  59. Peinado I, Girón J, Koutsidis G, Ames JM (2014) Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res Int 66:36–44CrossRefGoogle Scholar
  60. Posadas I, Bucci M, Roviezzo F, Rossi A, Parente L, Sautebin L, Cirino G (2004) Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol 142(2):331–338CrossRefPubMedPubMedCentralGoogle Scholar
  61. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341CrossRefPubMedGoogle Scholar
  62. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10):1231–1237CrossRefPubMedGoogle Scholar
  63. Sanjeewa KKA, Kim E-A, Son K-T, Jeon Y-J (2016) Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: a review. J Photochem Photobiol B 162:100–105CrossRefPubMedGoogle Scholar
  64. Sengar N, Joshi A, Prasad SK, Hemalatha S (2015) Anti-inflammatory, analgesic and anti-pyretic activities of standardized root extract of Jasminum sambac. J Ethnopharmacol 160:140–148CrossRefPubMedGoogle Scholar
  65. Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113(4):1202–1205CrossRefGoogle Scholar
  66. Shibata T, Kawaguchi S, Hama Y, Inagaki M, Yamaguchi K, Nakamura T (2004) Local and chemical distribution of phlorotannins in brown algae. J Appl Phycol 16(4):291–296CrossRefGoogle Scholar
  67. Shibata T, Ishimaru K, Kawaguchi S, Yoshikawa H, Hama Y (2008) Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J Appl Phycol 20(5):705–711CrossRefGoogle Scholar
  68. Silva IS, Nicolau LA, Sousa FB et al (2017) Evaluation of anti-inflammatory potential of aqueous extract and polysaccharide fraction of Thuja occidentalis Linn. in mice. Int J Biol Macromol 105(Pt 1):1105–1116CrossRefPubMedGoogle Scholar
  69. Stiger-Pouvreau V, Jégou C, Cérantola S et al (2014) Phlorotannins in Sargassaceae species from Brittany (France): interesting molecules for ecophysiological and valorisation purposes. Adv Bot Res 71:379–412CrossRefGoogle Scholar
  70. Sugiura Y, Tanaka R, Katsuzaki H, Imai K, Matsushita T (2013) The anti-inflammatory effects of phlorotannins from Eisenia arborea on mouse ear edema by inflammatory inducers. J Funct Foods 5(4):2019–2023CrossRefGoogle Scholar
  71. Sultana B, Anwar F, Przybylski R (2007) Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem 104(3):1106–1114CrossRefGoogle Scholar
  72. Sultana B, Anwar F, Ashraf M (2009) Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14(6):2167–2180CrossRefPubMedGoogle Scholar
  73. Sun H-H, Mao W-J, Jiao J-Y, Xu JC, Li HY, Chen Y, Qi XH, Chen YL, Xu J, Zhao CQ, Hou YJ, Yang YP (2011) Structural characterization of extracellular polysaccharides produced by the marine fungus Epicoccum nigrum JJY-40 and their antioxidant activities. Mar Biotechnol 13(5):1048–1055CrossRefPubMedGoogle Scholar
  74. Tenorio-Rodriguez PA, Murillo-Álvarez JI, Campa-Cordova ÁI, Angulo C (2017) Antioxidant screening and phenolic content of ethanol extracts of selected Baja California Peninsula macroalgae. J Food Sci Technol 54(2):422–429CrossRefPubMedPubMedCentralGoogle Scholar
  75. Thomas NV, Kim S-K (2011) Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharmacol 32(3):325–335CrossRefPubMedGoogle Scholar
  76. Treml J, Šmejkal K (2016) Flavonoids as potent scavengers of hydroxyl radicals. Compr Rev Food Sci Food Saf 15(4):720–738CrossRefGoogle Scholar
  77. Vadivelu N, Chang D, Helander EM, Bordelon GJ, Kai A, Kaye AD, Hsu D, Bang D, Julka I (2017) Ketorolac, oxymorphone, tapentadol, and tramadol. Anesthesiol Clin 35(2):e1–e20CrossRefPubMedGoogle Scholar
  78. Wei Y, Hu Y, Xu Z (2003) Inhibition of mouse liver lipid peroxidation by high molecular weight phlorotannins from Sargassum kjellmanianum. J Appl Phycol 15(6):507–511CrossRefGoogle Scholar
  79. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982CrossRefPubMedGoogle Scholar
  80. Wijesekara I, Yoon NY, Kim S-K (2010) Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. Biofactors 36(6):408–414CrossRefPubMedGoogle Scholar
  81. Wilson SG, Bryant CD, Lariviere WR, Olsen MS, Giles BE, Chesler EJ, Mogil JS (2003) The heritability of antinociception II: pharmacogenetic mediation of three over-the-counter analgesics in mice. J Pharmacol Exp Ther 305(2):755–764CrossRefPubMedGoogle Scholar
  82. Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111(3):544–547CrossRefPubMedGoogle Scholar
  83. Yang Y-I, Woo J-H, Seo Y-J, Lee KT, Lim Y, Choi JH (2016) Protective effect of brown alga phlorotannins against hyper-inflammatory responses in lipopolysaccharide-induced sepsis models. J Agric Food Chem 64(3):570–578CrossRefPubMedGoogle Scholar
  84. Zaoualí MA, Reiter RJ, Padrissa-Altés S, Boncompagni E, García JJ, Ben Abnennebi H, Freitas I, García-Gil FA, Rosello-Catafau J (2011) Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury. J Pineal Res 50(2):213–221PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy of MonastirUniversity of MonastirMonastirTunisia
  2. 2.Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products Team, Faculty of Sciences of MonastirUniversity of MonastirMonastirTunisia
  3. 3.Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of MonastirUniversity of MonastirMonastirTunisia
  4. 4.National Institute of Marine Sciences and TechnologiesSalambôoTunisia

Personalised recommendations