Skip to main content
Log in

Chimeras Linked to Tandem Repeats and Transposable Elements in Tetraploid Hybrid Fish

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The formation of the allotetraploid hybrid lineage (4nAT) encompasses both distant hybridization and polyploidization processes. The allotetraploid offspring have two sets of sub-genomes inherited from both parental species, and therefore, it is important to explore its genetic structure. Herein, we construct a bacterial artificial chromosome library of allotetraploids, and then sequence and analyze the full-length sequences of 19 bacterial artificial chromosomes. Sixty-eight DNA chimeras are identified, which are divided into four models according to the distribution of the genomic DNA derived from the parents. Among the 68 genetic chimeras, 44 (64.71%) are linked to tandem repeats (TRs) and 23 (33.82%) are linked to transposable elements (TEs). The chimeras linked to TRs are related to slipped-strand mispairing and double-strand break repair while the chimeras linked to TEs benefit from the intervention of recombinases. In addition, TRs and TEs can also result in insertions/deletions of DNA segments. We conclude that DNA chimeras accompanied by TRs and TEs coordinate a balance between the sub-genomes derived from the parents. It is the first report on the relationship between formation of the DNA chimeras and TRs and TEs in the polyploid animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson LK, Hooker KD, Stack SM (2001) The distribution of early recombination nodules on zygotene bivalents from plants. Genetics 159:1259–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belancio VP, Roy-Engel AM, Deininger PL (2010) All y’all need to know ‘bout retroelements in cancer. Semin Cancer Biol 20:200–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Bichara M, Wagner J, Lambert IB (2006) Mechanisms of tandem repeat instability in bacteria. Mutat Res Fundam Mol Mech Mutagen 598:144–163

  • Blair MW, Torres MM, Giraldo MC, Pedraza F (2009) Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.) BMC Plant Biol 9:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruggmann R, Bharti AK, Gundlach H, Lai J, Young S et al (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res 16:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catasti P, Chen X, Mariappan SVS, Bradbury EM, Gupta G (1999) DNA repeats in the human genome. Genetica 106:15–36

    Article  CAS  PubMed  Google Scholar 

  • Christiansen G, Molitor C, Philmus B, Kurmayer R (2008) Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol Biol Evol 25:1695–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox R, Mirkin SM (1997) Characteristic enrichment of DNA repeats in different genomes. Proc Natl Acad Sci U S A 94:5237–5242

  • Cridland JM, Macdonald SJ, Long AD, Thornton KR (2013) Abundance and distribution of transposable elements in two Drosophila QTL mapping resources. Mol Biol Evol 30:2311–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debrauwere H, Gendrel CG, Lechat S, Dutreix M (1997) Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. Biochimie 79:577–586

    Article  CAS  PubMed  Google Scholar 

  • Du RQ (2003) Biostatistics (in Chinese), 2nd edn. Higher Education Press, Beijing, pp 80–81

    Google Scholar 

  • Echenique VC, Stamova B, Wolters P, Lazo G, Carollo V et al (2002) Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104:840–844

    Article  CAS  PubMed  Google Scholar 

  • Finnegan DJ (1992) Transposable elements. Curr Opin Genet Dev 2(6):153–184

    Article  Google Scholar 

  • Gaeta RT, Chris PJ (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    Article  CAS  PubMed  Google Scholar 

  • Gemayel R, Vinces MD, Legendre M, Verstrepen KJ (2010) Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 44:445–477

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TJ, Butler MI, Poulter RT (2003) Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi. Microbiology 149:3099–3109

    Article  CAS  PubMed  Google Scholar 

  • Heyer WD, Ehmsen KT, Jie L (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jelesko JG, Carter K, Thompson W, Kinoshita Y, Gruissem W (2004) Meiotic recombination between paralogous RBCSB genes on sister chromatids of Arabidopsis thaliana. Genetics 166:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci U S A 103:4540–4545

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Kunze R, Saedler H, Lonnig WE (1997) Plant transposable elements. Adv Bot Res 27:331–470

    Article  CAS  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Li L, Jean M, Belzile F (2006) The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J 45:908–916

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Mark W, Chase MW, James JC et al (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763

    Article  CAS  PubMed  Google Scholar 

  • Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM et al (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437:94–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wendel JF (2002) Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3:489–505

  • Liu S, Liu Y, Zhou G, Zhang X, Luo C et al (2001) The formation of tetraploid stocks of red crucian carp × common carp hybrids as an effect of interspecific hybridization. Aquaculture 192:171–186

    Article  Google Scholar 

  • Liu S, Luo J, Chai J, Ren L, Zhou Y et al (2016) Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross. Proc Natl Acad Sci U S A 113:1327–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  CAS  PubMed  Google Scholar 

  • Mezard C, Vignard J, Drouaud J, Mercier R (2007) The road to crossovers: plants have their say. Trends Genet 23:91–99

    Article  CAS  PubMed  Google Scholar 

  • Naranjo T, Corredor E (2008) Nuclear architecture and chromosome dynamics in the search of the pairing partner in meiosis in plants. Cytogenet Genome Res 120:320–330

    Article  CAS  PubMed  Google Scholar 

  • Oliver KR, Greene WK (2009) Transposable elements: powerful facilitators of evolution. Genes Genomes 31:703–714

    CAS  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A et al (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci U S A 101:18240–18245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosom Res 15:3–19

    Article  CAS  Google Scholar 

  • Rizzon C, Marais G, Gouy M, Biémont C (2002) Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res 12:400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • San FJ, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    Article  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci U S A 92:6813–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanmiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44

    Article  CAS  Google Scholar 

  • Schug MD, Hutter CM, Wetterstrand KA, Gaudette MS, Mackay TF et al (1998) The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. J Neurosci Res 15:1751–1760

    CAS  Google Scholar 

  • Shapiro JA (2005) A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering. Gene 345:91–100

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA, Sternberg RV (2005) Why repetitive DNA is essential to genome function. Biol Rev 80:227–250

    Article  PubMed  Google Scholar 

  • Sharma A, Wolfgruber TK, Presting GG (2013) Tandem repeats derived from centromeric retrotransposons. BMC Genomics 14:1–11

    Article  Google Scholar 

  • Song C, Liu S, Xiao J, He WG, Zhou Y et al (2012) Polyploid organisms. Sci China Life Sci 55:301–311

    Article  PubMed  Google Scholar 

  • Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD et al (2009) Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res 69:9096–9104

    Article  CAS  PubMed  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell Sci 33:25–35

    Article  CAS  Google Scholar 

  • Toth G, Gaspari ZJ (2002) Microsatellites in different eukaryotic genomes: survey and analysis. Sociol Rural 46:40–60

    Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, An J, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37(9):986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Ye LH, Liu QZ, Peng LY, Liu W et al (2015) Rapid genomic DNA changes in allotetraploid fish hybrids. Heredity 114:601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Schnabel T, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci U S A 92(1):280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White SE, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci U S A 91:11792–11796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Arguello JR, Li X, Ding Y, Zhou Q et al (2008) Repetitive element-mediated recombination as a mechanism for new gene origination in, Drosophila. PLoS Genet 4:63–71

    Google Scholar 

  • Zwierzykowski Z, Tayyar R, Brunell M, Lukaszewski AJ (1998) Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J Hered 89:324–328

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grants 30930071, 91331105, 31360514, 31430088, and 31210103918), the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (20134486), the Construction Project of Key Discipline of Hunan Province and China, and the National High Technology Research and Development Program of China (Grant No. 2011AA100403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 4133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Jiao, N., Tang, X. et al. Chimeras Linked to Tandem Repeats and Transposable Elements in Tetraploid Hybrid Fish. Mar Biotechnol 19, 401–409 (2017). https://doi.org/10.1007/s10126-017-9764-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9764-6

Keywords

Navigation