Skip to main content
Log in

Nitrogen Effect on Water-Soluble Polysaccharide Accumulation in Streblonema sp. (Ectocarpales, Phaeophyceae)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The water-soluble polysaccharides of brown algae attract the increasing attention of researchers as an important class of polymeric materials of biotechnological interest. The sole source for production of these polysaccharides has been large brown seaweeds such as members of Laminariales and Fucales. A new source of water-soluble polysaccharides is suggested here: it is a filamentous brown alga Streblonema sp., which can be cultivated under controlled conditions in photobioreactors that allow obtaining algal biomass with reproducible content and quality of polysaccharides. The accumulation of water-soluble polysaccharides can be stimulated by macronutrient limitation. In response to nitrogen deficiency, Streblonema sp. accumulated water-soluble polysaccharides (WSPs) rich in laminaran. WSP accumulation started after 3–4 days following nitrate depletion and reached a plateau at around day 7. Polysaccharide accumulation was related to cellular nitrogen content. The critical internal N level that triggered the onset of polysaccharide accumulation was 2.3% dry weight (DW); at a cellular N concentration less than 1.4% DW, the polysaccharide synthesis stopped. Upon nitrate re-supply, mobilization of WSP occurred after 3 days. These results suggest that a two-stage cultivation process could be used to obtain large algal biomass with high water-soluble polysaccharide production: a first cultivation stage using nitrate-supplemented medium to accumulate algal biomass followed by a second cultivation stage in a nitrate-free medium for 3 to 7 days to enhance polysaccharide content in the alga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd El Baky H, Hanaa El Baz KF, El-Latife SA (2013) Induction of sulfated polysaccharides in Spirulina platensis as response to nitrogen concentration and its biological evaluation. J Aquac Res Development 5:206

    Google Scholar 

  • Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B (2013) Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour Technol 131:188–194

    Article  CAS  PubMed  Google Scholar 

  • Arad SM, Lerental YB, Dubinsky O (1992) Effect of nitrate and sulfate starvation on polysaccharide formation in Rhodella reticulata. Bioresour Technol 42:141–148

    Article  CAS  Google Scholar 

  • Bellefeuille SD, Dorion S, Rivoal J, Morse D (2014) The dinoflagellate Lingulodinium polyedrum responds to N depletion by a polarized deposition of starch and lipid bodies. PLoS One 9:e111067

  • Black WAP (1954) The seasonal variation in the combined L-fucose content of the common British laminariaceae and fucaceae. J Sci Food Agric 5:445–448

    Article  CAS  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ehrig K, Alban S (2014) Sulfated galactofucan from the brown alga Saccharina latissima—variability of yield, structural composition and bioactivity. Mar Drugs 13(1):76–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Giroldo D, Vieira AAH (2002) An extracellular sulfated fucose-rich polysaccharide produced by a tropical strain of Cryptomonas obovata (Cryptophyceae). J Appl Phycol 14:185–191

    Article  CAS  Google Scholar 

  • Imbs TI, Shevchenko NM, Sukhoverkhov SV, Semenova TL, Skriptsova AV, Zvyagintseva TN (2009) Seasonal variations of the composition and structural characteristics of the polysaccharide from the brown alga Costaria costata. Chem Nat Comp 45:786–791

    Article  CAS  Google Scholar 

  • Iwao T, Kurashima A, Maegawa M (2008) Effect of seasonal changes in the photosynthates mannitol and laminaran on maturation of Ecklonia cava (Phaeophyceae, Laminariales) in Nishiki Bay, Central Japan. Phycol Res 56:1–6

    Article  CAS  Google Scholar 

  • Iwao T, Yamaguchi T, Kurashima A, Maegawa M (2010) Effect of laminaran accumulation on maturation in sporophyte fragments from Ecklonia cava (Phaeophyceae, Laminariales) under various laboratory light and temperature conditions. Phycol Res 58:132–137

    Article  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Kilham SS, Kreeger DA, Goulden CE, Lynn SG (1997) Effect of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshw Biol 38:591–596

    Article  CAS  Google Scholar 

  • Klein U (1987) Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiol 85:892–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macler BA (1986) Rugulation of carbon flow by nitrogen and light in the red alga, Gelidium couteri. Plant Physiol 82:136–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magaletti E, Urbani R, Sist P, Ferrari CR, Cicero AM (2004) Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P-limitation. Eur J Phycol 39:133–142

    Article  CAS  Google Scholar 

  • McLachlan J (1964) Some considerations of the growth of marine algae in artificial media. Can J Microbiol 10:769–782

    Article  CAS  PubMed  Google Scholar 

  • Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59

    Article  CAS  PubMed  Google Scholar 

  • Otero A, Vincenzini M (2004) Nostoc (Cyanophyceae) goes nude: extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J Phycol 40:74–81

    Article  CAS  Google Scholar 

  • Pearl R, Reed LJ (1920) On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc Natl Acad Sci U S A 6:275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae. Proceedings of the U.S.–Japan Conference, Hakone, Japan, September 1966. Japanese Society of Plant Physiology

  • Razaghi A, Godhe A, Albers E (2014) Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Cent Eur J Biol 9:156–162

    CAS  Google Scholar 

  • Rioux LE, Turgeon SL, Beaulieu M (2009) Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris. Phytochemistry 70:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Shevchenko NM, Anastiuk SD, Gerasimenko NI, Dmitrenok PS, Isakov VV, Zviagintseva TN (2007) Polysaccharide and lipid composition of the brown seaweed Laminaria gurjanovae. Russ J Bioorg Chem 33:88–98

    Article  CAS  Google Scholar 

  • Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjøtun K, Gunnarsson K (1995) Seasonal growth pattern of an Icelandic Laminaria population (section Simplices, Laminariaceae, Phaeophyta) containing solid- and hollow-stiped plants. Eur J Phycol 30:281–287

    Article  Google Scholar 

  • Speziale BJ, Schreiner SP, Ciarnrnatteo PA, Schindler JE (1984) Comparison of N,N-dimethylformamide, dimethyl sulfoxide, and acetone for extraction of phytoplankton chlorophyll. Can J Fish Aquat Sci 41:1519–1522

    Article  CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bulletin 167. Fisheries Research Board of Canada, Ottawa

  • Usov AI, Smirnova GP, Klochkova NG (2001) Algae polysaccharides. 55. Polysaccharide composition of some brown Kamchatka algae. Bioorg Khim 27(6):444–448 (in Russian)

    CAS  PubMed  Google Scholar 

  • Vítová M, Bišová K, Kawano S, Zachleder V (2015) Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. Biothechnol Adv. doi:10.1016/j.biotechadv.2015.04.012

  • Yang Z, Geng G, Wang W, Zhang J (2012) Combined effects of temperature, light intensity, and nitrogen concentration on the growth and polysaccharide content of Microcystis aeruginosa in batch culture. Biochem Syst Ecol 41:130–135

    Article  CAS  Google Scholar 

  • Yao CH, Ai JN, Cao XP, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    Article  CAS  PubMed  Google Scholar 

  • Zvyagintseva TN, Shevchenko NM, Chizhov AO, Krupnova TN, Sundukova EV, Isakov VV (2003) Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J Exp Mar Biol Ecol 294:1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Russian Foundation for Basic Research (project 14-04-00973).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna V. Skriptsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skriptsova, A.V. Nitrogen Effect on Water-Soluble Polysaccharide Accumulation in Streblonema sp. (Ectocarpales, Phaeophyceae). Mar Biotechnol 19, 410–419 (2017). https://doi.org/10.1007/s10126-017-9759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9759-3

Keywords

Navigation