Skip to main content
Log in

Identification and Characterization of the Lysine-Rich Matrix Protein Family in Pinctada fucata: Indicative of Roles in Shell Formation

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Mantle can secret matrix proteins playing key roles in regulating the process of shell formation. The genes encoding lysine-rich matrix proteins (KRMPs) are one of the most highly expressed matrix genes in pearl oysters. However, the expression pattern of KRMPs is limited and the functions of them still remain unknown. In this study, we isolated and identified six new members of lysine-rich matrix proteins, rich in lysine, glycine and tyrosine, and all of them are basic matrix proteins. Combined with four members of the KRMPs previously reported, all these proteins can be divided into three subclasses according to the results of phylogenetic analyses: KRMP1–3 belong to subclass KPI, KRMP4–5 belong to KPII, and KRMP6–10 belong to KPIII. Three subcategories of lysine-rich matrix proteins are highly expressed in the D-phase, the larvae and adult mantle. Lysine-rich matrix proteins are involved in the shell repairing process and associated with the formation of the shell and pearl. What’s more, they can cause abnormal shell growth after RNA interference. In detail, KPI subgroup was critical for the beginning formation of the prismatic layer; both KPII and KPIII subgroups participated in the formation of prismatic layer and nacreous layer. Compared with different temperatures and salinity stimulation treatments, the influence of changes in pH on KRMPs gene expression was the greatest. Recombinant KRMP7 significantly inhibited CaCO3 precipitation, changed the morphology of calcite, and inhibited the growth of aragonite in vitro. Our results are beneficial to understand the functions of the KRMP genes during shell formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:980–987

    Article  CAS  PubMed  Google Scholar 

  • Belton D, Paine G, Patwardhan SV, Perry CC (2004) Towards an understanding of (bio) silicification: the role of amino acids and lysine oligomers in silicification. J Mater Chem 14:2231–2241

    Article  CAS  Google Scholar 

  • Berland S, Marie A, Duplat D, Milet C, Sire JY, Bedouet L (2011) Coupling proteomics and transcriptomics for the identification of novel and variant forms of mollusk shell proteins: a study with P. margaritifera. Chembiochem 12:950–961

    Article  CAS  PubMed  Google Scholar 

  • Fang D, Xu G, Hu Y, Pan C, Xie L, Zhang R (2011) Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata. PLoS One 6:e21860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang D, Pan C, Lin H, Lin Y, Zhang G, Wang H, He M, Xie L, Zhang R (2012) Novel basic protein, PfN23, functions as key macromolecule during nacre formation. J Biol Chem 287:15776–15785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farre B, Dauphin Y (2009) Lipids from the nacreous and prismatic layers of two Pteriomorpha mollusc shells. Comp Biochem Physiol B Biochem Mol Biol 152:103–109

    Article  CAS  PubMed  Google Scholar 

  • Gardner LD, Mills D, Wiegand A, Leavesley D, Elizur A (2011) Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima. BMC Genomics 12:455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue N, Ishibashi R, Ishikawa T, Atsumi T, Aoki H, Komaru A (2011) Gene expression patterns in the outer mantle epithelial cells associated with pearl sac formation. Mar Biotechnol 13:474–483

    Article  CAS  PubMed  Google Scholar 

  • Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C (2010) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27:591–608

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Wang N, Inoue H, Maeyama K, Okamoto K, Nagai K, Kondo H, Hirono I, Asakawa S, Watabe S (2011) Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster. PLoS One 6:e21238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Hu Y, Liang J, Kong Y, Huang J, Feng Q, Li S, Zhang G, Xie L, Zhang R (2010) Calcineurin plays an important role in the shell formation of pearl oyster (Pinctada fucata). Mar Biotechnol 12:100–110

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li J, Xiang L, Sun J, Zheng G, Zhang G, Wang H, Xie L, Zhang R (2012) The role of matrix proteins in the control of nacreous layer deposition during pearl formation. Proc R Soc Lond Ser B Biol Sci 279:1000–1007

    Article  CAS  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  • Luquet G (2012) Biomineralizations: insights and prospects from crustaceans. Zookeys 176:103–121

    Article  Google Scholar 

  • Mann S (2001) Biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Marie B, Zanella-Cleon I, Corneillat M, Becchi M, Alcaraz G, Plasseraud L, Luquet G, Marin F (2011) Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus. FEBS J 278:2117–2130

    Article  CAS  PubMed  Google Scholar 

  • Marie B, Joubert C, Tayalé A, Zanella-Cléon I, Belliard C, Piquemal D, Cochennec-Laureau N, Marin F, Gueguen Y, Montagnani C (2012) Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci U S A 109:20986–20991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276

    Article  CAS  PubMed  Google Scholar 

  • Marin F, Le Roy N, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci (Schol Ed) S4:1099–1125

  • Masaoka T, Kobayashi T (2009) Analysis of nucleotide variation and inheritance of lysine-rich matrix protein (KRMP) genes participating in shell formation of pearl oyster. DNA Polymorphism 17:126–135

    CAS  Google Scholar 

  • McDougall C, Aguilera F, Moase P, Lucas JS, Degnan BM (2013a) Pearls. Curr Biol 23:R671–R673

    Article  CAS  PubMed  Google Scholar 

  • McDougall C, Aguilera F, Degnan BM (2013b) Rapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains. J R Soc Interface 10:20130041

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki Y, Nishida T, Aoki H, Samata T (2010) Expression of genes responsible for biomineralization of Pinctada fucata during development. Comp Biochem Physiol B Biochem Mol Biol 155:241–248

    Article  PubMed  Google Scholar 

  • Samata T, Hayashi N, Kono M, Hasegawa K, Horita C, Akera S (1999) A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett 462:225–229

    Article  CAS  PubMed  Google Scholar 

  • Simkiss K, Wilbur K (1989) Biomineralization. Cell biology and mineral deposition. Academic Press, San Diego

  • Suzuki M, Nagasawa H (2007) The structure-function relationship analysis of Prismalin-14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata. FEBS J 274:5158–5166

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Nagasawa H (2013) Mollusk shell structures and their formation mechanism. Can J Zool 91:349–366

    Article  CAS  Google Scholar 

  • Suzuki M, Murayama E, Inoue H, Ozaki N, Tohse H, Kogure T, Nagasawa H (2004) Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem J 382:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Sarashina I, Iijima M, Endo K (2008) In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS Lett 582:591–596

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Su J, Zheng G, Liang J, Zhang G, Wang H, Xie L, Zhang R (2013) Patterns of expression in the matrix proteins responsible for nucleation and growth of aragonite crystals in flat pearls of Pinctada fucata. PLoS One 8:e66564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Jing G, Gong N, Li C, Zhou Y, Xie L, Zhang R (2007) N40, a novel nonacidic matrix protein from pearl oyster nacre, facilitates nucleation of aragonite in vitro. Biomacromolecules 8:3597–3601

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Nagai K, Morimoto K, Miyamoto H (2006) Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 144:254–262

    Article  PubMed  Google Scholar 

  • Zhang C, Xie L, Huang J, Liu X, Zhang R (2006) A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochem Biophys Res Commun 344:735–740

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ping Xie or Rong-Qing Zhang.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China Grants 31372502 and 31572594 and Independent Research Projects of Tsinghua University Grant 20111080964.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 86 kb)

Fig. S1

Purification of recombinant KRMP7. Arrows represent the proteins induced by IPTG and confirmed by Western blot. (GIF 19 kb)

High Resolution Image (TIFF 5016 kb)

Fig. S2

The position of qPCR primers in KRMP nucleotide sequences. The black single underline, bold underline, and double underline indicate primers qKPIF/qKPIR, qKPIIF/qKPIIR and qKPIIIF/qKPIIIR, respectively. (GIF 227 kb)

High Resolution Image (TIFF 8077 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Xie, J., Gao, J. et al. Identification and Characterization of the Lysine-Rich Matrix Protein Family in Pinctada fucata: Indicative of Roles in Shell Formation. Mar Biotechnol 18, 645–658 (2016). https://doi.org/10.1007/s10126-016-9724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-016-9724-6

Keywords

Navigation