Skip to main content
Log in

A Single Injection of Hypertrophied Androgenic Gland Cells Produces All-Female Aquaculture

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Monosex culture, common in animal husbandry, enables gender-specific management. Here, production of all-female prawns (Macrobrachium rosenbergii) was achieved by a novel biotechnology comprising three steps: (a) A single injection of suspended hypertrophied androgenic gland cells caused fully functional sex reversal of females into “neo-males” bearing the WZ genotype; (b) crossing neo-males with normal females (WZ) yielded genomically validated WW females; and (c) WW females crossed with normal males (ZZ) yielded all-female progeny. This is the first sustainable biotechnology for large-scale all-female crustacean aquaculture. The approach is particularly suited to species in which females are superior to males and offers seedstock protection, thereby ensuring a quality seed supply. Our technology will thus revolutionize not only the structure of the crustacean aquaculture industry but can also be applied to other sectors. Finally, the production of viable and reproducible females lacking the Z chromosome questions its role, with respect to sexuality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkalay-Savaya A et al. (2014) The prawn Macrobrachium vollenhovenii in the Senegal River basin: towards sustainable restocking of all-male populations for biological control of schistosomiasis. PLoS Negl Trop Dis 8:e3060.

    Article  Google Scholar 

  • Barki A, Karplus I, Khalaila I, Manor R, Sagi A (2003) Male-like behavioral patterns and physiological alterations induced by androgenic gland implantation in female crayfish. J Exp Biol 206:1791–1797.

    Article  PubMed  Google Scholar 

  • Cao JX, Yin GL, Yang WJ (2006) Identificaflon of a novel male reproduction-related gene and its regulated expression patterns in the prawn, Macrobrachium rosenbergii. Peptides 27:728–735.

    Article  CAS  PubMed  Google Scholar 

  • Charniaux-Cotton H (1954) Discovery in, an amphipod crustacean (Orchestia gammarella) of an endocrine gland responsible for the differentiation of primary and secondary male sex characteristics. C R Hebd Seances Acad Sci 239:780–782

    CAS  PubMed  Google Scholar 

  • Chung JS, Manor R, Sagi A (2011) Cloning of an insulin-like androgenic gland factor (IAG) from the blue crab, Callinectes sapidus: implications for eyestalk regulation of IAG expression. Gen Comp Endocrinol 173:4–10.

    Article  CAS  PubMed  Google Scholar 

  • Cronin LE (1947) Anatomy and histology of the male reproductive system of Callinectes sapidus Rathbun. J Morphol 81:209–239

    Article  CAS  PubMed  Google Scholar 

  • FAO (2015) Fisheries and aquaculture information and statistics service-aquaculture production 1950–2013. Food and Agriculture Organization of the United Nations. http://www.fao.org/fi/statist/FISOFT/FISHPLUS.asp. Accessed 17 March 2016

  • Gopal C et al. (2010) Weight and time of onset of female-superior sexual dimorphism in pond reared Penaeus monodon. Aquaculture 300:237–239.

    Article  Google Scholar 

  • Hansford SW, Hewitt DR (1994) Growth and nutrient digestibility by male and female Penaeus monodon—evidence of sexual dimorphism. Aquaculture 125:147–154.

    Article  Google Scholar 

  • Huang X, Ye H, Huang H, Yang Y, Gong J (2014) An insulin-like androgenic gland hormone gene in the mud crab, Scylla paramamosain, extensively expressed and involved in the processes of growth and female reproduction. Gen Comp Endocrinol 204:229–238.

    Article  CAS  PubMed  Google Scholar 

  • Karplus I, Sagi A, Khalaila I, Barki A (2003) The influence of androgenic gland implantation on the agonistic behavior of female crayfish (Cherax quadricarinatus) in interactions with males. Behaviour 140:649–663.

    Article  Google Scholar 

  • Keller R (1992) Crustacean neuropeptides—structures, functions and comparative aspects. Experientia 48:439–448.

    Article  CAS  PubMed  Google Scholar 

  • Khalaila I, Katz T, Abdu U, Yehezkel G, Sagi A (2001) Effects of implantation of hypertrophied androgenic glands on sexual characters and physiology of the reproductive system in the female red claw crayfish, Cherax quadricarinatus. Gen Comp Endocrinol 121:242–249.

    Article  CAS  PubMed  Google Scholar 

  • Khalaila I, Manor R, Weil S, Granot Y, Keller R, Sagi A (2002) The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus. Gen Comp Endocrinol 127:147–156

    Article  CAS  PubMed  Google Scholar 

  • Kuris AM, Raanan Z, Sagi A, Cohen D (1987) Morphotypic differentiation of male Malaysian giant prawns, Macrobrachium-rosenbergii. J Crustac Biol 7:219–237.

    Article  Google Scholar 

  • Lezer Y, Aflalo ED, Manor R, Sharabi O, Abilevich LK, Sagi A (2015) On the safety of RNAi usage in aquaculture: the case of all-male prawn stocks generated through manipulation of the insulin-like androgenic gland hormone. Aquaculture 435:157–166.

    Article  CAS  Google Scholar 

  • Li S, Li F, Sun Z, Xiang J (2012) Two spliced variants of insulin-like androgenic gland hormone gene in the Chinese shrimp, Fenneropenaeus chinensis. Gen Comp Endocrinol 177:246–255.

    Article  CAS  PubMed  Google Scholar 

  • Malecha SR (1986) New techniques for the assessment and optimal management of growth and standing crop variation in the cultured fresh-water prawn, Macrobrachium rosenbergii. Aquac Eng 5:183–197.

    Article  Google Scholar 

  • Malecha S (2012) The case for all-female freshwater prawn, Macrobrachium rosenbergii (de man), culture. Aquac Res 43:1038–1048.

    Article  Google Scholar 

  • Malecha SR, Nevin PA, Ha P, Barck LE, Lamadridrose Y, Masuno S, Hedgecock D (1992) Sex-ratios and sex-determination in progeny from crosses of surgically sex-reversed freshwater prawns, Macrobrachium rosenbergii. Aquaculture 105:201–218.

    Article  Google Scholar 

  • Manor R, Aflalo ED, Segall C, Weil S, Azulay D, Ventura T, Sagi A (2004) Androgenic gland implantation promotes growth and inhibits vitellogenesis in Cherax quadricarinatus females held in individual compartments. Invertebr Reprod Dev 45:151–159.

    Article  Google Scholar 

  • Manor R et al. (2007) Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish. Gen Comp Endocrinol 150:326–336.

    Article  CAS  PubMed  Google Scholar 

  • Maynard DM (1960) Circulation and heart function. In: Waterman TH (ed) The physiology of Crustacea, vol 1. Academic Press, New York, pp 161–226

    Google Scholar 

  • Moss DR, Moss SM (2006) Effects of gender and size on feed acquisition in the Pacific white shrimp Litopenaeus vannamei. J World Aquacult Soc 37:161–167

    Article  Google Scholar 

  • Moss DR, Hennig OL, Moss SM (2002) Sexual growth dimorphism in penaeid shrimp. Potential for all female culture? Global Aquac Advocate 5:60–61

    Google Scholar 

  • Nagamine C, Knight AW, Maggenti A, Paxman G (1980) Masculinization of female Macrobrachium rosenbergii (de man) (Decapoda, Palaemonidae) by androgenic gland implantation. Gen Comp Endocrinol 41:442–457.

    Article  CAS  PubMed  Google Scholar 

  • Nair CM, Salin KR, Raju MS, Sebastian M (2006) Economic analysis of monosex culture of giant freshwater prawn (Macrobrachium rosenbergii de man): a case study. Aquac Res 37:949–954.

    Article  Google Scholar 

  • Otoshi CA, Arce SM, Moss SM (2003) Growth and reproductive performance of broodstock shrimp reared in a biosecure recirculating aquaculture system versus a flow-through pond. Aquac Eng 29:93–107.

    Article  Google Scholar 

  • Ra’anan Z, Cohen D (1985) Ontogeny of social structure and population dynamics in the giant freshwater prawn, Macrobrachium rosenbergii (de man). In: Wenner A, Schram FR (eds) Crustacean growth, vol 2. A. A. Balkema, Rotterdam, pp 277–311

    Google Scholar 

  • Rosen O, Manor R, Weil S, Aflalo ED, Bakhrat A, Abdu U, Sagi A (2013) An androgenic gland membrane-anchored gene associated with the crustacean insulin-like androgenic gland hormone. J Exp Biol 216:2122–2128.

    Article  CAS  PubMed  Google Scholar 

  • Sagi A, Aflalo ED (2005) The androgenic gland and monosex culture of freshwater prawn Macrobrachium rosenbergii (de man): a biotechnological perspective. Aquac Res 36:231–237.

    Article  Google Scholar 

  • Sagi A, Cohen D (1990) Growth, maturation and progeny of sex-reversed Macrobrachium rosenbergii males. World Aquacult 21:87–90

    Google Scholar 

  • Sagi A, Raanan Z, Cohen D, Wax Y (1986) Production of Macrobrachium rosenbergii in monosex populations—yield characteristics under intensive monoculture conditions in cages. Aquaculture 51:265–275.

    Article  Google Scholar 

  • Sagi A, Cohen D, Milner Y (1990) Effect of androgenic gland ablation on morphotypic differentiation and sexual characteristics of male fresh-water prawns, Macrobrachium rosenbergii. Gen Comp Endocrinol 77:15–22.

    Article  CAS  PubMed  Google Scholar 

  • Sagi A, Snir E, Khalaila I (1997) Sexual differentiation in decapod crustaceans: role of the androgenic gland. Invertebr Reprod Dev 31:55–61.

    Article  Google Scholar 

  • Sharabi O et al. (2016) Identification and characterization of an insulin-like receptor involved in crustacean reproduction. Endocrinology 157:928–941.

    Article  CAS  PubMed  Google Scholar 

  • Sorsby A (1965) Gregor Mendel. Br Med J 1:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sroyraya M et al. (2010) Bilateral eyestalk ablation of the blue swimmer crab, Portunus pelagicus, produces hypertrophy of the androgenic gland and an increase of cells producing insulin-like androgenic gland hormone. Tissue Cell 42:293–300.

    Article  CAS  PubMed  Google Scholar 

  • Taketomi Y, Nishikawa S (1996) Implantation of androgenic glands into immature female crayfish, Procambarus clarkii, with masculinization of sexual characteristics. J Crustac Biol 16:232–239.

    Article  Google Scholar 

  • Ventura T, Sagi A (2012) The insulin-like androgenic gland hormone in crustaceans: from a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol Adv 30:1543–1550.

    Article  CAS  PubMed  Google Scholar 

  • Ventura T, Manor R, Aflalo ED, Weil S, Raviv S, Glazer L, Sagi A (2009) Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology 150:1278–1286.

    Article  CAS  PubMed  Google Scholar 

  • Ventura T, Aflalo ED, Weil S, Kashkush K, Sagi A (2011a) Isolation and characterization of a female-specific DNA marker in the giant freshwater prawn Macrobrachium rosenbergii. Heredity 107:456–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura T, Manor R, Aflalo ED, Weil S, Khalaila I, Rosen O, Sagi A (2011b) Expression of an androgenic-gland-specific insulin-like peptide during the course of prawn sexual and morphotypic differentiation. ISRN Endocrinol 2011:476283

  • Ventura T, Fitzgibbon Q, Battaglene S, Sagi A, Elizur A (2015) Identification and characterization of androgenic gland specific insulin-like peptide-encoding transcripts in two spiny lobster species: Sagmariasus verreauxi and Jasus edwardsii. Gen Comp Endocrinol 214:126–133.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Riel JM, Ruthig VA, Ortega EA, Mitchell MJ, Ward MA (2016) Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science 351:514–516.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Ayana Benet-Perlberg and her team at the Ministry of Agriculture - Aquaculture Research Station, Dor, Israel, for housing the prawns during parts of this study. Funding for this study was provided by Enzootic Holdings, Ltd. and partially by United States-Israel Binational Agricultural Research and Development Fund Grant IS-4493-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Sagi.

Ethics declarations

Conflict of Interest

A patent regarding functional sex reversal of decapod crustacean female is pending (PCT/IL2015/051,096).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, T., Rosen, O., Eilam, B. et al. A Single Injection of Hypertrophied Androgenic Gland Cells Produces All-Female Aquaculture. Mar Biotechnol 18, 554–563 (2016). https://doi.org/10.1007/s10126-016-9717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-016-9717-5

Keywords

Navigation