Skip to main content

A Single Injection of Hypertrophied Androgenic Gland Cells Produces All-Female Aquaculture

Abstract

Monosex culture, common in animal husbandry, enables gender-specific management. Here, production of all-female prawns (Macrobrachium rosenbergii) was achieved by a novel biotechnology comprising three steps: (a) A single injection of suspended hypertrophied androgenic gland cells caused fully functional sex reversal of females into “neo-males” bearing the WZ genotype; (b) crossing neo-males with normal females (WZ) yielded genomically validated WW females; and (c) WW females crossed with normal males (ZZ) yielded all-female progeny. This is the first sustainable biotechnology for large-scale all-female crustacean aquaculture. The approach is particularly suited to species in which females are superior to males and offers seedstock protection, thereby ensuring a quality seed supply. Our technology will thus revolutionize not only the structure of the crustacean aquaculture industry but can also be applied to other sectors. Finally, the production of viable and reproducible females lacking the Z chromosome questions its role, with respect to sexuality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alkalay-Savaya A et al. (2014) The prawn Macrobrachium vollenhovenii in the Senegal River basin: towards sustainable restocking of all-male populations for biological control of schistosomiasis. PLoS Negl Trop Dis 8:e3060.

    Article  Google Scholar 

  2. Barki A, Karplus I, Khalaila I, Manor R, Sagi A (2003) Male-like behavioral patterns and physiological alterations induced by androgenic gland implantation in female crayfish. J Exp Biol 206:1791–1797.

    Article  PubMed  Google Scholar 

  3. Cao JX, Yin GL, Yang WJ (2006) Identificaflon of a novel male reproduction-related gene and its regulated expression patterns in the prawn, Macrobrachium rosenbergii. Peptides 27:728–735.

    CAS  Article  PubMed  Google Scholar 

  4. Charniaux-Cotton H (1954) Discovery in, an amphipod crustacean (Orchestia gammarella) of an endocrine gland responsible for the differentiation of primary and secondary male sex characteristics. C R Hebd Seances Acad Sci 239:780–782

    CAS  PubMed  Google Scholar 

  5. Chung JS, Manor R, Sagi A (2011) Cloning of an insulin-like androgenic gland factor (IAG) from the blue crab, Callinectes sapidus: implications for eyestalk regulation of IAG expression. Gen Comp Endocrinol 173:4–10.

    CAS  Article  PubMed  Google Scholar 

  6. Cronin LE (1947) Anatomy and histology of the male reproductive system of Callinectes sapidus Rathbun. J Morphol 81:209–239

    CAS  Article  PubMed  Google Scholar 

  7. FAO (2015) Fisheries and aquaculture information and statistics service-aquaculture production 1950–2013. Food and Agriculture Organization of the United Nations. http://www.fao.org/fi/statist/FISOFT/FISHPLUS.asp. Accessed 17 March 2016

  8. Gopal C et al. (2010) Weight and time of onset of female-superior sexual dimorphism in pond reared Penaeus monodon. Aquaculture 300:237–239.

    Article  Google Scholar 

  9. Hansford SW, Hewitt DR (1994) Growth and nutrient digestibility by male and female Penaeus monodon—evidence of sexual dimorphism. Aquaculture 125:147–154.

    Article  Google Scholar 

  10. Huang X, Ye H, Huang H, Yang Y, Gong J (2014) An insulin-like androgenic gland hormone gene in the mud crab, Scylla paramamosain, extensively expressed and involved in the processes of growth and female reproduction. Gen Comp Endocrinol 204:229–238.

    CAS  Article  PubMed  Google Scholar 

  11. Karplus I, Sagi A, Khalaila I, Barki A (2003) The influence of androgenic gland implantation on the agonistic behavior of female crayfish (Cherax quadricarinatus) in interactions with males. Behaviour 140:649–663.

    Article  Google Scholar 

  12. Keller R (1992) Crustacean neuropeptides—structures, functions and comparative aspects. Experientia 48:439–448.

    CAS  Article  PubMed  Google Scholar 

  13. Khalaila I, Katz T, Abdu U, Yehezkel G, Sagi A (2001) Effects of implantation of hypertrophied androgenic glands on sexual characters and physiology of the reproductive system in the female red claw crayfish, Cherax quadricarinatus. Gen Comp Endocrinol 121:242–249.

    CAS  Article  PubMed  Google Scholar 

  14. Khalaila I, Manor R, Weil S, Granot Y, Keller R, Sagi A (2002) The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus. Gen Comp Endocrinol 127:147–156

    CAS  Article  PubMed  Google Scholar 

  15. Kuris AM, Raanan Z, Sagi A, Cohen D (1987) Morphotypic differentiation of male Malaysian giant prawns, Macrobrachium-rosenbergii. J Crustac Biol 7:219–237.

    Article  Google Scholar 

  16. Lezer Y, Aflalo ED, Manor R, Sharabi O, Abilevich LK, Sagi A (2015) On the safety of RNAi usage in aquaculture: the case of all-male prawn stocks generated through manipulation of the insulin-like androgenic gland hormone. Aquaculture 435:157–166.

    CAS  Article  Google Scholar 

  17. Li S, Li F, Sun Z, Xiang J (2012) Two spliced variants of insulin-like androgenic gland hormone gene in the Chinese shrimp, Fenneropenaeus chinensis. Gen Comp Endocrinol 177:246–255.

    CAS  Article  PubMed  Google Scholar 

  18. Malecha SR (1986) New techniques for the assessment and optimal management of growth and standing crop variation in the cultured fresh-water prawn, Macrobrachium rosenbergii. Aquac Eng 5:183–197.

    Article  Google Scholar 

  19. Malecha S (2012) The case for all-female freshwater prawn, Macrobrachium rosenbergii (de man), culture. Aquac Res 43:1038–1048.

    Article  Google Scholar 

  20. Malecha SR, Nevin PA, Ha P, Barck LE, Lamadridrose Y, Masuno S, Hedgecock D (1992) Sex-ratios and sex-determination in progeny from crosses of surgically sex-reversed freshwater prawns, Macrobrachium rosenbergii. Aquaculture 105:201–218.

    Article  Google Scholar 

  21. Manor R, Aflalo ED, Segall C, Weil S, Azulay D, Ventura T, Sagi A (2004) Androgenic gland implantation promotes growth and inhibits vitellogenesis in Cherax quadricarinatus females held in individual compartments. Invertebr Reprod Dev 45:151–159.

    Article  Google Scholar 

  22. Manor R et al. (2007) Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish. Gen Comp Endocrinol 150:326–336.

    CAS  Article  PubMed  Google Scholar 

  23. Maynard DM (1960) Circulation and heart function. In: Waterman TH (ed) The physiology of Crustacea, vol 1. Academic Press, New York, pp 161–226

    Google Scholar 

  24. Moss DR, Moss SM (2006) Effects of gender and size on feed acquisition in the Pacific white shrimp Litopenaeus vannamei. J World Aquacult Soc 37:161–167

    Article  Google Scholar 

  25. Moss DR, Hennig OL, Moss SM (2002) Sexual growth dimorphism in penaeid shrimp. Potential for all female culture? Global Aquac Advocate 5:60–61

    Google Scholar 

  26. Nagamine C, Knight AW, Maggenti A, Paxman G (1980) Masculinization of female Macrobrachium rosenbergii (de man) (Decapoda, Palaemonidae) by androgenic gland implantation. Gen Comp Endocrinol 41:442–457.

    CAS  Article  PubMed  Google Scholar 

  27. Nair CM, Salin KR, Raju MS, Sebastian M (2006) Economic analysis of monosex culture of giant freshwater prawn (Macrobrachium rosenbergii de man): a case study. Aquac Res 37:949–954.

    Article  Google Scholar 

  28. Otoshi CA, Arce SM, Moss SM (2003) Growth and reproductive performance of broodstock shrimp reared in a biosecure recirculating aquaculture system versus a flow-through pond. Aquac Eng 29:93–107.

    Article  Google Scholar 

  29. Ra’anan Z, Cohen D (1985) Ontogeny of social structure and population dynamics in the giant freshwater prawn, Macrobrachium rosenbergii (de man). In: Wenner A, Schram FR (eds) Crustacean growth, vol 2. A. A. Balkema, Rotterdam, pp 277–311

    Google Scholar 

  30. Rosen O, Manor R, Weil S, Aflalo ED, Bakhrat A, Abdu U, Sagi A (2013) An androgenic gland membrane-anchored gene associated with the crustacean insulin-like androgenic gland hormone. J Exp Biol 216:2122–2128.

    CAS  Article  PubMed  Google Scholar 

  31. Sagi A, Aflalo ED (2005) The androgenic gland and monosex culture of freshwater prawn Macrobrachium rosenbergii (de man): a biotechnological perspective. Aquac Res 36:231–237.

    Article  Google Scholar 

  32. Sagi A, Cohen D (1990) Growth, maturation and progeny of sex-reversed Macrobrachium rosenbergii males. World Aquacult 21:87–90

    Google Scholar 

  33. Sagi A, Raanan Z, Cohen D, Wax Y (1986) Production of Macrobrachium rosenbergii in monosex populations—yield characteristics under intensive monoculture conditions in cages. Aquaculture 51:265–275.

    Article  Google Scholar 

  34. Sagi A, Cohen D, Milner Y (1990) Effect of androgenic gland ablation on morphotypic differentiation and sexual characteristics of male fresh-water prawns, Macrobrachium rosenbergii. Gen Comp Endocrinol 77:15–22.

    CAS  Article  PubMed  Google Scholar 

  35. Sagi A, Snir E, Khalaila I (1997) Sexual differentiation in decapod crustaceans: role of the androgenic gland. Invertebr Reprod Dev 31:55–61.

    Article  Google Scholar 

  36. Sharabi O et al. (2016) Identification and characterization of an insulin-like receptor involved in crustacean reproduction. Endocrinology 157:928–941.

    CAS  Article  PubMed  Google Scholar 

  37. Sorsby A (1965) Gregor Mendel. Br Med J 1:333–338

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Sroyraya M et al. (2010) Bilateral eyestalk ablation of the blue swimmer crab, Portunus pelagicus, produces hypertrophy of the androgenic gland and an increase of cells producing insulin-like androgenic gland hormone. Tissue Cell 42:293–300.

    CAS  Article  PubMed  Google Scholar 

  39. Taketomi Y, Nishikawa S (1996) Implantation of androgenic glands into immature female crayfish, Procambarus clarkii, with masculinization of sexual characteristics. J Crustac Biol 16:232–239.

    Article  Google Scholar 

  40. Ventura T, Sagi A (2012) The insulin-like androgenic gland hormone in crustaceans: from a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol Adv 30:1543–1550.

    CAS  Article  PubMed  Google Scholar 

  41. Ventura T, Manor R, Aflalo ED, Weil S, Raviv S, Glazer L, Sagi A (2009) Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology 150:1278–1286.

    CAS  Article  PubMed  Google Scholar 

  42. Ventura T, Aflalo ED, Weil S, Kashkush K, Sagi A (2011a) Isolation and characterization of a female-specific DNA marker in the giant freshwater prawn Macrobrachium rosenbergii. Heredity 107:456–461.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Ventura T, Manor R, Aflalo ED, Weil S, Khalaila I, Rosen O, Sagi A (2011b) Expression of an androgenic-gland-specific insulin-like peptide during the course of prawn sexual and morphotypic differentiation. ISRN Endocrinol 2011:476283

  44. Ventura T, Fitzgibbon Q, Battaglene S, Sagi A, Elizur A (2015) Identification and characterization of androgenic gland specific insulin-like peptide-encoding transcripts in two spiny lobster species: Sagmariasus verreauxi and Jasus edwardsii. Gen Comp Endocrinol 214:126–133.

    CAS  Article  PubMed  Google Scholar 

  45. Yamauchi Y, Riel JM, Ruthig VA, Ortega EA, Mitchell MJ, Ward MA (2016) Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science 351:514–516.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Ayana Benet-Perlberg and her team at the Ministry of Agriculture - Aquaculture Research Station, Dor, Israel, for housing the prawns during parts of this study. Funding for this study was provided by Enzootic Holdings, Ltd. and partially by United States-Israel Binational Agricultural Research and Development Fund Grant IS-4493-12.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Assaf Shechter or Amir Sagi.

Ethics declarations

Conflict of Interest

A patent regarding functional sex reversal of decapod crustacean female is pending (PCT/IL2015/051,096).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levy, T., Rosen, O., Eilam, B. et al. A Single Injection of Hypertrophied Androgenic Gland Cells Produces All-Female Aquaculture. Mar Biotechnol 18, 554–563 (2016). https://doi.org/10.1007/s10126-016-9717-5

Download citation

Keywords

  • All-female population
  • Androgenic gland
  • Appendix masculina
  • Hypertrophied androgenic gland (hAG) cells
  • Prawn
  • Sex reversal