Skip to main content
Log in

Characterization of Stearoyl-CoA Desaturases from a Psychrophilic Antarctic Copepod, Tigriopus kingsejongensis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Stearoyl-CoA desaturase is a key regulator in fatty acid metabolism that catalyzes the desaturation of stearic acid to oleic acid and controls the intracellular levels of monounsaturated fatty acids (MUFAs). Two stearoyl-CoA desaturases (SCD, Δ9 desaturases) genes were identified in an Antarctic copepod, Tigriopus kingsejongensis, that was collected in a tidal pool near the King Sejong Station, King George Island, Antarctica. Full-length complementary DNA (cDNA) sequences of two T. kingsejongensis SCDs (TkSCDs) were obtained from next-generation sequencing and isolated by reverse transcription PCR. DNA sequence lengths of the open reading frames of TkSCD-1 and TkSCD-2 were determined to be 1110 and 681 bp, respectively. The molecular weights deduced from the corresponding genes were estimated to be 43.1 kDa (TkSCD-1) and 26.1 kDa (TkSCD-2). The amino acid sequences were compared with those of fatty acid desaturases and sterol desaturases from various organisms and used to analyze the relationships among TkSCDs. As assessed by heterologous expression of recombinant proteins in Escherichia coli, the enzymatic functions of both stearoyl-CoA desaturases revealed that the amount of C16:1 and C18:1 fatty acids increased by greater than 3-fold after induction with isopropyl β-d-thiogalactopyranoside. In particular, C18:1 fatty acid production increased greater than 10-fold in E. coli expressing TkSCD-1 and TkSCD-2. The results of this study suggest that both SCD genes from an Antarctic marine copepod encode a functional desaturase that is capable of increasing the amounts of palmitoleic acid and oleic acid in a prokaryotic expression system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beld J, Blatti JL, Behnke C, Mendez M, Bunkart MD (2014) Evolution of acyl-ACP thioesterases and beta-ketoacyl-ACP synthases revealed by protein-protein interactions. J Appl Phycol 26:1619–1629

    Article  CAS  PubMed  Google Scholar 

  • Bertin P, Bullens P, Bouharmont J, Kinet JM (1998) Somaclonal variation and chilling tolerance improvement in rice: changes in fatty acid composition. Plant Growth Regul 24:31–41

    Article  CAS  Google Scholar 

  • Cao Y, Liu W, Xu X, Zhang H, Wang J, Xian M (2014) Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli. Biotechnol Biofuels 7:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18:581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz RP, Golombieski JI, Bazana MT, Cabreira C, Silveira TF, Silva LP (2010) Alterations in fatty acid composition due to cold exposure at the vegetative stage in rice. Braz J Plant Physiol 22:199–207

    Article  Google Scholar 

  • Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in procariotic membrane proteins: the dense alignment surface method. Protein Eng 10:673–676

    Article  CAS  PubMed  Google Scholar 

  • Davenport J, Barnett PRO, McAllen RJ (1997) Environmental tolerances of three species of the harpacticoid copepod genus Tigriopus brevicornis. J Mar Biol Assoc UK 77:3–16

    Article  Google Scholar 

  • Enoch HG, Catala A, Strittmatter P (1976) Mechanism of rat liver microsomal stearyl-CoA desaturase: studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem 251:5095–5103

    CAS  PubMed  Google Scholar 

  • Feng Y, Cronan JE (2009) Escherichia coli Unsaturated fatty synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem 284:29526–29535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratraud P, Huws E, Falkard B, Adjalley S, Fidock DA, Berry L, Jacobs WRJ, Baird MS, Vial H, Kremer L (2009) Oleic acid biosynthesis in Plasmodium falciparum: characterization of the stearoyl-CoA desaturase and investigation as a potential therapeutic target. PLoS One 4:e6889

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • He Y, Wang K, Yan N (2014) The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell 5:658–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann FS, Ozols J (2003) Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms. Prostaglandins Leukot Essent Fatty Acids 68:123–133

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase - a database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374

  • Jung SO, Lee YM, Park TJ, Park HG, Hagiwara A, Leung KMY, Dahms HU, Lee W, Lee JS (2006) The complete mitochondrial genome of the intertidal copepod Tigriopus sp. (Copepoda Harpactidae) from Korea and phylogenetic considerations. J Exp Mar Biol Ecol 333:251–262

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  PubMed  Google Scholar 

  • Karasova-Lipovova P, Strnad H, Spiwok V, Mala S, Kralova B, Russell NJ (2003) The cloning, purification and characterisation of a cold-active beta-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzym Microb Technol 33:836–844

    Article  CAS  Google Scholar 

  • Kim IC, Kim YJ, Lee YM, Kim BG, Park TJ, Kim HS, Jung MM, Williams TD, Lee W, Lee JS (2004) cDNA cloning of translationally controlled tumor protein/histamine releasing factor (TCTP/HRP) from the intertidal harpacticoid copepod Tigriopus japonicus. DNA Seq 15:159–163

    Article  PubMed  Google Scholar 

  • Lenz PH, Unal E, Hassett RP, Smith CM, Bucklin A, Christie AE, Towle DW (2012) Functional genomics resources for the North Atlantic copepod, Calanus finmarchicus: EST database and physiological microarray. Comp Biochem Physiol Part D Genomics Proteomics 7:110–123

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15

    Article  CAS  PubMed  Google Scholar 

  • Machida RJ, Miya MU, Nishida M, Nishida S (2002) Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda. Mar Biotechnol 4:406–417

    Article  CAS  PubMed  Google Scholar 

  • Meesapyodsuk D, Qiu X (2014) Structure determinants for the substrate specificity of acyl-CoA delta 9 desaturases from a marine copepod. ACS Chem Biol 9:922–934

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen OG, Jorgensen K (1992) Dynamic lipid-bilayer heterogeneity: a mesoscopic vehicle for membrane function. BioEssays 14:129–136

    Article  CAS  PubMed  Google Scholar 

  • Nichols DS, Nichols PD, Sullivan CW (1993) Fatty acid, sterol and hydrocarbon composition of Antarctic Sea-ice diatom communities during the spring bloom in McMurdo sound. Antarct Sci 5:271–278

    Google Scholar 

  • Paton CM, Ntambi JM (2009) Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297:E28–E37

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Raisuddin S, Kwok KWH, Leung KMY, Schlenk D, Lee JS (2007) The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol 83:161–173

    Article  CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Microbial ID Inc., Newark, Del

    Google Scholar 

  • Svensk E, Stahlman M, Andersson CH, Johansson M, Boren J, Pilon M (2013) PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans. PLoS Genet 9:e1003801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiede MA, Ozols J, Strittmatter PJ (1986) Construction and sequence of cDNA for liver stearoyl coenzyme a desaturase. J Biol Chem 261:13230–13235

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 11:4673–4680

    Article  Google Scholar 

  • Tocher DR, Leaver MJ, Hodgson PA (1998) Recent developments in the molecular biology and biochemistry of fatty acyl desaturases. Prog Lipid Res 37:73–117

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Klein MG, Zou H, Lane W, Snell G, Levin I, Li K, Sang BC (2015) Crystal structure of human stearoyl-coenzyme a desaturase in complex with substrate. Nat Struct Mol Biol 22:581–585

    Article  CAS  PubMed  Google Scholar 

  • White PL, Wynn-Williams DD, Russell NJ (2000) Diversity of thermal responses of lipid composition in the membranes of the dominant culturable members of an Antarctic fellfield soil bacterial community. Antarct Sci 12:386–393

    Article  Google Scholar 

  • Wiebe WJ, Sheldon WM, Pomeroy LR (1992) Bacterial growth in the cold: evidence for an enhanced substrate requirement. Appl Environ Microbiol 58:359–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Liu S, Cong B, Wu G, Liu C, Lin X, Shen J, Huang X (2011) A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp. ICE-L. Mar Biotechnol 13:393–401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an Antarctic copepod genome project (PE14260 to S. Kim) and the basic research program (PE15020 to W. Jung) of the Korea Polar Research Institute (KOPRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghee Kim.

Additional information

Woongsic Jung and Eun Jae Kim contributed equally to this work

Electronic supplementary material

Supplemental Fig. 1

Picture for sampling sites of T. kingsejongensis. (DOCX 1229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, W., Kim, E.J., Han, S.J. et al. Characterization of Stearoyl-CoA Desaturases from a Psychrophilic Antarctic Copepod, Tigriopus kingsejongensis . Mar Biotechnol 18, 564–574 (2016). https://doi.org/10.1007/s10126-016-9714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-016-9714-8

Keywords

Navigation