Skip to main content
Log in

Quantification of the Genetic Expression of bgl-A, bgl, and CspA and Enzymatic Characterization of β-Glucosidases from Shewanella sp. G5

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Shewanella sp. G5, a psychrotolerant marine bacterium, has a cold-shock protein (CspA) and three β-glucosidases, two of which were classified in the glycosyl hydrolase families 1 and 3 and are encoded by bgl-A and bgl genes, respectively. Shewanella sp. G5 was cultured on Luria-Bertani (LB) and Mineral Medium Brunner (MMB) media with glucose and cellobiose at various temperatures and pH 6 and 8. Relative quantification of the expression levels of all three genes was studied by real-time PCR with the comparative Ct method (2-ΔΔCt) using the gyrB housekeeping gene as a normalizer. Results showed that the genes had remarkably different genetic expression levels under the conditions evaluated, with increased expression of all genes obtained on MMB with cellobiose at 30 °C. Specific growth rate and specific β-glucosidase activity were also determined for all the culture conditions. Shewanella sp. G5 was able to grow on both media at 4 °C, showing the maximum specific growth rate on LB with cellobiose at 37 °C. The specific β-glucosidase activity obtained on MMB with cellobiose at 30 °C was 25 to 50 % higher than for all other conditions. At pH 8, relative activity was 34, 60, and 63 % higher at 30 °C than at 10 °C, with three peaks at 10, 25, and 37 °C on both media. Enzyme activity increased by 61 and 47 % in the presence of Ca2+ and by 24 and 31 % in the presence of Mg2+ on LB and MMB at 30 °C, respectively, but it was totally inhibited by Hg2+, Cu2+, and EDTA. Moreover, this activity was slightly decreased by SDS, Zn2+, and DTT, all at 5 mM. Ethanol (14 % v/v) and glucose (100 mM) also reduced the activity by 63 and 60 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali-Benali MA, Alary R, Joudrier P, Gautier NF (2005) Comparative expression of five Lea Genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR. Biochim Biophys Acta 1730:56–65

    Article  CAS  PubMed  Google Scholar 

  • Barbagallo RN, Spagna G, Palmeri R, Restuccia C, Giudici P (2004) Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications. Enzym Microb Technol 35:58–66

    Article  CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-Glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407

    Article  CAS  PubMed  Google Scholar 

  • Botteldoorn N, Coillie EV, Grijspeerdt K, Werbrouck H, Haesebrouck F et al (2006) Real-time reverse transcription PCR for the quantification of the mntH expression of Salmonella enterica as a function of growth phase and phagosome-like conditions. J Microbiol Methods 66:125–135

    Article  CAS  PubMed  Google Scholar 

  • Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cai YJ, Buswell JA, Chang ST (1998) β-Glucosidase components of the cellulolytic system of the edible strawmushroom, Volvariella volvacea. Enzym Microb Technol 22:122–129

    Article  CAS  Google Scholar 

  • Cournoyer B, Faure D (2003) Radiation and functional specialization of the family 3 glycoside hydrolases. J Mol Microbiol Biotechnol 5:190–198

    Article  CAS  PubMed  Google Scholar 

  • Cristóbal HA, Breccia JD, Abate CM (2008) Isolation and molecular characterization of Shewanella sp. G5, a producer of cold-active β-D-glucosidases. J Basic Microbiol 48:16–24

    Article  PubMed  Google Scholar 

  • Cristóbal HA, Schmidt A, Kothe E, Breccia J, Abate CM (2009) Characterization of inducible cold-active β-glucosidases from the psychrotolerant bacterium Shewanella sp. G5 isolated from a sub-Antarctic ecosystem. Enzym Microb Technol 45:498–506

    Article  Google Scholar 

  • Cristóbal HA, López MA, Khote E, Abate CM (2011) Diversity of protease-producing marine bacteria from sub-Antarctic environments. J Basic Microbiol 51:590–600

    Article  PubMed  Google Scholar 

  • Cristóbal HA, Cid AG, Abate CM, Rajat VB (2013) Advancement on bacterial enzyme technology for industries: research and application of novel biocatalysts. In: Gupta VK, Tuohy MG, Sharma GD et al (eds) Applications of microbial genes in enzyme technology. Nova biomedical microbiology research advances, Nova Science Publishers Inc, New York, Chapter 18, pp 353–374

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  PubMed Central  Google Scholar 

  • DSMZ (2012) http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium457.pdf

  • Ellefsen S, Stenslokken K, Sandvik G, Kristensen T, Nilsson E (2008) Improved normalization of real-time reverse transcriptase polymerase chain reaction data using an external RNA control. Anal Biochem 376:83–93

    Article  CAS  PubMed  Google Scholar 

  • Faure D (2002) The family-3 glycoside hydrolases: from housekeeping functions to host-microbe interactions. Appl Environ Microbiol 68:1485–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Yang ZK, Wu L et al (2006) Global Transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock protein. J Bacteriol 188:4560–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwashita K, Nadahara T, Kimura H, Takono M, Shimol H, Ito K (1999) The bglA gene of Aspergillus kawachii encodes both extracellular and cell wall-bound β-Glucosidases. Appl Environ Microbiol 65:5546–5553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones P, Mitta M, Kim Y, Jiang W, Inouye M (1996) Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci U S A 93:76–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJ, Reynolds CD, Sihanonth P (2007) Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii. FEMS Microbiol Lett 270:162–170

    Article  CAS  PubMed  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson AD (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Factories 7:27

    Article  Google Scholar 

  • Liu ZL, Palmquist DE, Ma M, Liu J, Alexander NJ (2009) Application of a master equation for quantitative mRNA analysis using RT-qPCR. J Biotechnol 143:10–16

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Zhang X, Fang Z, Fang W, Peng H, Xiao Y (2011) The 184th residue of β-glucosidase Bgl1B plays an important role in glucose tolerance. J Biosci Bioeng 112:447–450

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopez MM, Makhatadze GI (2000) Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact di¡erently with single-stranded DNA templates. Biochim Biophys Acta 1479:196–202

    Article  CAS  PubMed  Google Scholar 

  • Murray P, Arob N, Collins C, Grassick A, Penttilä M, Saloheimo M, Tuohy M (2004) Expression in Trichoderma reesei and characterization of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr Purif 38:248–257

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nazir A, Soni R, Saini HS, Kaur A, Chadha BS (2010) Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Appl Biochem Biotechnol 162:538–547

    Article  CAS  PubMed  Google Scholar 

  • Nerbrink E, Borch E, Blom H, Nesbakken T (1999) A model based on absorbance data on the growth rate of Listeria monocytogenes and including the effects of pH, NaCl, Na-lactate and Na-acetate. Int J Food Microbiol 47:99–109

    Article  CAS  PubMed  Google Scholar 

  • Nielsen K, Boye M (2005) Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions. Appl Environ Microbiol 71:2949–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Nagase M, Ichiyanagi T, Kitamoto Y, Aimi T (2007) Transcriptional regulation of two cellobiohydrolase encoding genes (cel1 and cel2) from the wood-degrading basidiomycete Polyporus arcularius. Appl Microbiol Biotechnol 76:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Painbeni E, Valles S, Polaina J, Flors A (1992) Purification and characterization of a Bacillus polymyxa β-glucosidase expressed in Escherichia coli. J Bacteriol 174:3087–3091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pakchung AH, Simpson PJ, Codd R (2006) Life on earth. Extremophiles continue to move the goal posts. Environ Chem 3:77–93

    Article  CAS  Google Scholar 

  • Palmeri R, Spagna G (2007) β-Glucosidase in cellular and acellular form for winemaking application. Enzym Microb Technol 40:382–389

    Article  CAS  Google Scholar 

  • Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saha BC, Freer SN, Bothast RJ (1994) Production, purification, and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Appl Environ Microbiol 60:3774–3780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sellars MJ, Vuocolo T, Leeton LA, Comana GJ, Degnan BM, Preston NP (2007) Real-time RT-PCR quantification of Kuruma shrimp transcripts: a comparison of relative and absolute quantification procedures. J Biotechnol 129:391–399

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Sukumaran RK, Rajasree KP, Mathew A, Gottumukkala LD, Pandey A (2011) Properties of a major beta-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochem 46:1521–1524

    Article  CAS  Google Scholar 

  • Spagna G (2000) A simple method for purifying glycosidases: alpha-l-rhamnopyranosidase from Aspergillus niger to increase the aroma of Moscato wine. Enzym Microb Technol 27:522–530

    Article  CAS  Google Scholar 

  • Spagna G, Andreani F, Salatelli E, Romagnoli D, Casarini D, Pifferi PG (1998) Immobilization of the glycosidases: a-L-arabinofuranosidase and b-Dglucopyranosidase from Aspergillus niger on a chitosan derivative to increase the aroma of wine. Enzym Microb Technol 23:413–421

    Article  CAS  Google Scholar 

  • Strube C, Buschbaum S, Wolken S, Schnieder T (2008) Evaluation of reference genes for quantitative real-time PCR to investigate protein disulfide isomerase transcription pattern in the bovine lungworm Dictyocaulus viviparous. Gene 425:36–43

    Article  CAS  PubMed  Google Scholar 

  • Theis T, Skurray RA, Brown MH (2007) Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR. J Microbiol Methods 70:355–362

    Article  CAS  PubMed  Google Scholar 

  • Tsukada T, Igarashi K, Yoshida M, Samejima M (2006) Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 73:807–814

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F (2002) Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:0034.1–0034.11

    Article  Google Scholar 

  • Villas-Bôas SG, Noel S, Lane GA, Attwood G, Cookson A (2006) Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Anal Biochem 349:297–305

    Article  PubMed  Google Scholar 

  • Wang Y, Zhu W, Levy D (2006) Nuclear and cytoplasmic mRNA quantification by SYBR green based real-time RT-PCR. Methods 39:356–362

    Article  CAS  PubMed  Google Scholar 

  • Werbrouck H, Grijspeerdt K, Botteldoorn N, Van Pamel E (2006) Differential inlA and inlB expression and interaction with human intestinal and liver cells by Listeria monocytogenes strains of different origins. Appl Environ Microbiol 72:3862–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Jiang Z, Yan Q, Zhu H (2008) Characterization of a thermostable extracellular β-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophile. J Agric Food Chem 56:602–608

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Igarashi K, Kawai R, Aida K, Samejima M (2004) Differential transcription of β-glucosidase and cellobiose dehydrogenase genes in cellulose degradation by the basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 235:177–182

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by Consejo de Investigaciones de la Universidad Nacional de Salta (Salta, Argentina) through the research projects N° 1669 and 1798. Héctor A. Cristóbal and Hugo R. Poma were holders of graduate fellowships awarded by Consejo Nacional de Investigaciones Científicas y Técnicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Antonio Cristóbal.

Additional information

Carlos Mauricio Abate passed away during the preparation of the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Primer analysis by conventional PCR and real-time PCR: (a) Agarose gel electrophoresis of the PCR products from the genes studied with designed primers. Lanes are M: 100 bp DNA Ladder, 1: CspA, 2: bgl-A, 3: bgl, 4: gyrB, 5: 16S rDNA, and 6: negative control. Dissociation curves generated with Applied Biosystems software: (b) 16S rDNA, (c) gyrB, (d) bgl-A, (e) bgl, and (f) CspA. (DOCX 1871 kb)

Fig. S2

Standard curves for the genes assayed determined that the amplification efficiency of all the systems was optimal: 99.9 % for 16S rDNA (slope −3.69), 99.3 % for gyrB (slope −3.24), 99.7 % for bgl (slope −3.43), 99.2 % for bgl-A and CspA (slopes −3.39). (DOCX 80 kb)

Table S1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristóbal, H.A., Poma, H.R., Abate, C.M. et al. Quantification of the Genetic Expression of bgl-A, bgl, and CspA and Enzymatic Characterization of β-Glucosidases from Shewanella sp. G5. Mar Biotechnol 18, 396–408 (2016). https://doi.org/10.1007/s10126-016-9702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-016-9702-z

Keywords

Navigation