Skip to main content

Advertisement

Log in

Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:980–987

  • Adomako-Ankomah A, Ettensohn CA (2011) P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo. Dev Biol 353:81–93

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

  • Amata O, Marino T, Russo N, Toscano M (2011) Catalytic activity of a zeta-class zinc and cadmium containing carbonic anhydrase. Compared work mechanisms. Phys Chem Chem Phys 13:3468–3477

  • Arnett FC, Reveille JD, Goldstein R, Pollard M, Leaird K, Smith EA, Leroy EC, Fritzler MJ (1996) Autoantibodies to fibrillarin in systemic sclerosis (scleroderma). An immunogenetic, serologic, and clinical analysis. Arthritis Rheum 39:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Barneche F, Steinmetz F, Echeverria M (2000) Fibrillarin genes encode both a conserved nucleolar protein and a novel small nucleolar RNA involved in ribosomal RNA methylation in Arabidopsis thaliana. J Biol Chem 275:27212–27220

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

  • Bonaventura R, Zito F, Costa C, Giarrusso S, Celi F, Matranga V (2011) Stress response gene activation protects sea urchin embryos exposed to X-rays. Cell Stress Chaperones 16:681–687

  • Boone CD, Habibzadegan A, Gill S, McKenna R (2013) Carbonic anhydrases and their biotechnological applications. Biomolecules 3:553–562

  • Cannon GC, Heinhorst S, Kerfeld CA (2010) Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim Biophys Acta 1804:382–392

  • Capasso C, Supuran CT (2014) An overview of the alpha-, beta- and gamma-carbonic anhydrases from bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem. doi:10.3109/14756366.2014.910202

    Google Scholar 

  • Chow G, Benson SC (1979) Carbonic anhydrase activity in developing sea urchin embryos. Exp Cell Res 124:451–453

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Cavalcante C, Zito F, Yokota Y, Matranga V (2010) Phylogenetic analysis and homology modelling of Paracentrotus lividus nectin. Mol Divers 14:653–665

  • Costa C, Karakostis K, Zito F, Matranga V (2012) Phylogenetic analysis and expression patterns of p16 and p19 in Paracentrotus lividus embryos. Dev Genes Evol 222:245–251

  • Cross BCS, Sinning I, Luirink J, High S (2009) Delivering proteins for export from the cytosol. Nat Rev Mol Cell Biol 10:255–264

    Article  CAS  PubMed  Google Scholar 

  • Drake JL, Mass T, Falkowski PG (2014) The evolution and future of carbonate precipitation in marine invertebrates: witnessing extinction or documenting resilience in the Anthropocene? Elem Sci Anth 2:000026

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

  • Ettensohn CA (2009) Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136:11–21

  • Frigeri LG, Radabaugh TR, Haynes PA, Hildebrand M (2006) Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana: insights into silica structure formation. Mol Cell Proteomics 5:182–193

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

  • Guss KA, Ettensohn CA (1997) Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Development 124:1899–1908

    CAS  PubMed  Google Scholar 

  • Hodor PG, Ettensohn CA (1998) The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Dev Biol 199:111–124

  • Jackson DJ, Macis L, Reitner J, Worheide G (2011) A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy. BMC Evol Biol 11:238

  • Jones WC, Ledger PW (1986) The effect of diamox and various concentrations of calcium on spicule secretion in the calcareous sponge Sycon ciliatum. Comp Biochem Physiol A Physiol 84:149–158

  • Kakei M, Nakahara H (1996) Aspects of carbonic anhydrase and carbonate content during mineralization of the rat enamel. Biochim Biophys Acta 1289:226–230

    Article  PubMed  Google Scholar 

  • Karakostis K, Zanella-Cléon I, Immel F, Guichard N, Dru P, Lepage T, Plasseraud L, Matranga V, Marin F (2016) A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus. J Proteome. doi:10.1016/j.jprot.2016.01.001

    Google Scholar 

  • Lehenkari P, Hentunen TA, Laitala-Leinonen T, Tuukkanen J, Vaananen HK (1998) Carbonic anhydrase II plays a major role in osteoclast differentiation and bone resorption by effecting the steady state intracellular pH and Ca2+. Exp Cell Res 242:128–137

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Methods 25:402–408

  • Livingston BT et al (2006) A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 300:335–348

  • Love AC, Andrews ME, Raff RA (2007) Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm. Evol Dev 9:51–68

  • Mangeon A, Junqueira RM, Sachetto-Martins G (2010) Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal Behav 5:99–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann K, Poustka AJ, Mann M (2008a) In-depth, high-accuracy proteomics of sea urchin tooth organic matrix. Proteome Sci 6:33

  • Mann K, Poustka AJ, Mann M (2008b) The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes. Proteome Sci 6:22

  • Mann K, Wilt FH, Poustka AJ (2010) Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci 8:33

  • Matranga V, Bonaventura R, Costa C, Karakostis K, Pinsino A, Russo R, Zito F (2011) Echinoderms as blueprints for biocalcification: regulation of skeletogenic genes and matrices. Prog Mol Subcell Biol 52:225–248

  • Mitsunaga K, Akasaka K, Shimada H, Fujino Y, Yasumasu I, Numanoi H (1986) Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules. Cell Differ 18:257–262

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A 93:9657–9660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller WEG, Jinhe L, Schröder HC, Li Q, Xiaohong W (2007) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4:219–232

  • Müller WE, Wang X, Grebenjuk VA, Korzhev M, Wiens M, Schlossmacher U, Schröder HC (2012) Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge. PLoS One 7:e34617

  • Okazaki K (1965) Skeleton formation of sea urchin larvae. V. Continuous observation of the process of matrix formation. Exp Cell Res 40:585–596

    Article  CAS  PubMed  Google Scholar 

  • Pamirsky IE, Golokhvast KS (2013) Origin and status of homologous proteins of biomineralization (biosilicification) in the taxonomy of phylogenetic domains. Biomed Res Int 2013:397278

  • Pinsino A, Matranga V, Trinchella F, Roccheri MC (2010) Sea urchin embryos as an in vivo model for the assessment of manganese toxicity: developmental and stress response effects. Ecotoxicology 19:555–562

  • Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PU (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci U S A 105:17362–17366

  • Rafiq K, Cheers MS, Ettensohn CA (2012) The genomic regulatory control of skeletal morphogenesis in the sea urchin. Development 139:579–590

  • Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

  • Rogelj B, Godin KS, Shaw CE, Ule J (2012) The Functions of glycine-rich regions in TDP43, FUS and related RNA-binding proteins. In: Zdravko L (ed) RNA binding proteins. Landes Bioscience, Austin

  • Russo R, Zito F, Costa C, Bonaventura R, Matranga V (2010) Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B. Cell Stress Chaperones 15:993–1001

  • Russo R, Pinsino A, Costa C, Bonaventura R, Matranga V, Zito F (2014) The newly characterized Pl-jun is specifically expressed in skeletogenic cells of the Paracentrotus lividus sea urchin embryo. FEBS J 281:3828–3843

  • Saito R, Sato T, Ikai A, Tanaka N (2004) Structure of bovine carbonic anhydrase II at 1.95 A resolution. Acta Crystallogr D Biol Crystallogr 60:792–795

  • Salem M, Nath J, Killefer J (2004) Cloning of the calpain regulatory subunit cDNA from fish reveals a divergent domain-V. Anim Biotechnol 15:145–157

  • Satoh A, Kurano N, Miyachi S (2001) Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO(2). Photosynth Res 68:215–224

  • Shi QX, Roldan ER (1995) Bicarbonate/CO2 is not required for zona pellucida- or progesterone-induced acrosomal exocytosis of mouse spermatozoa but is essential for capacitation. Biol Reprod 52:540–546

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J Biol Chem 277:18658–18664

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  CAS  PubMed  Google Scholar 

  • So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186:623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Wang X, Li L, Zhang G (2014) Identification two novel nacrein-like proteins involved in the shell formation of the Pacific oyster Crassostrea gigas. Mol Biol Rep 41:4273–4278

  • Stumpp M, Hu YM, Melzner F, Gutowska AM, Dorey N, Himmerkus N, Holtmann WC, Dupont ST, Thorndyke MC, Bleich M (2012) Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc Natl Acad Sci U S A 109:18192–18197

  • Supuran CT (2008) Carbonic anhydrases—an overview. Curr Pharm Des 14:603–614

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohse H, Mugiya Y (2001) Effects of enzyme and anion transport inhibitors on in vitro incorporation of inorganic carbon and calcium into endolymph and otoliths in salmon Oncorhynchus masou. Comp Biochem Physiol A Mol Integr Physiol 128:177–184

    Article  CAS  PubMed  Google Scholar 

  • Veis A (2011) Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth. Front Biosci (Landmark Ed) 16:2540–2560

    Article  CAS  Google Scholar 

  • Vidavsky N, Addadi S, Mahamid J, Shimoni E, Ben-Ezra D, Shpigel M, Weiner S, Addadi L (2014) Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc Natl Acad Sci U S A 111:39–44

  • Wang X, Schlossmacher U, Wiens M, Batel R, Schröder HC, Müller WE (2012) Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules. FEBS J 279:1721–1736

  • Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392:861–862

  • Wilt FH (2002) Biomineralization of the spicules of sea urchin embryos. Zool Sci 19:253–261

    Article  CAS  PubMed  Google Scholar 

  • Wilt FH (2005) Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev Biol 280:15–25

  • Xiang L, Kong W, Su J, Liang J, Zhang G, Xie L, Zhang R (2014) Amorphous calcium carbonate precipitation by cellular biomineralization in mantle cell cultures of Pinctada fucata. PLoS One 9:e113150

  • Zito F, Koop D, Byrne M, Matranga V (2015) Carbonic anhydrase inhibition blocks skeletogenesis and echinochrome production in Paracentrotus lividus and Heliocidaris tuberculata embryos and larvae. Develop Growth Differ 57:507–514

Download references

Acknowledgments

This work has been fully supported by the EU-ITN BIOMINTEC Project, contract number 215507 to V. Matranga. The first author, K. Karakostis, has been the recipient of a Marie Curie ITN program fellowship in the frame of the above-mentioned project. We thank Dr. B. Diehl-Seifert (ed.enilno-t@trefieS.lebreab-tumleh), NanotecMARIN GmbH, Mainz, Germany, for the immunization of mice and the preparation of the anti-Pl-CAN antibodies. Authors acknowledge the technical assistance of M. Biondo for sea urchins maintenance and breeding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Costa.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

This paper is dedicated to the memory of Valeria Matranga who did not live to see her work published.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

In vitro esterase activity assay of Pl-CAN by hydrolysis of p-nitrophenyl acetate, measured by the absorbance at 405 nm after 30 min. Each sample was tested in triplicate and the standard deviation (SD) was calculated. The CA activity of Pl-CAN was inhibited by the addition of the CA inhibitor acetazolamide (0.1 mM, Pl-CAN + inhibitor). Human CA was used as a positive control. (TIF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakostis, K., Costa, C., Zito, F. et al. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos. Mar Biotechnol 18, 384–395 (2016). https://doi.org/10.1007/s10126-016-9701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-016-9701-0

Keywords

Navigation