Skip to main content

Advertisement

Log in

Chitosan-Mediated shRNA Knockdown of Cytosolic Alanine Aminotransferase Improves Hepatic Carbohydrate Metabolism

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Alanine aminotransferase (ALT) catalyses a transamination reaction that links carbohydrate and amino acid metabolism. In this study, we examined the effect of silencing cytosolic ALT (cALT) expression on the hepatic metabolism in Sparus aurata. A number of siRNA and shRNA designed to down-regulate cALT expression were validated in HEK-293 cells transfected with plasmids expressing S. aurata cALT or mitochondrial ALT (mALT) isoforms: ALT silencing significantly decreased the expression levels of S. aurata mRNA cALT1 to 62 % (siRNA) and 48 % (shRNA) of the values observed in control cells. The effect of cALT silencing was analysed in the liver of S. aurata 72 h after intraperitoneal injection of chitosan-tripolyphosphate (TPP) nanoparticles complexed with a plasmid encoding a shRNA to down-regulate cALT expression (pCpG-si1sh1). In fish fed diets with different ratio of protein to carbohydrate and treated with chitosan-TPP-pCpG-si1sh1, cALT1 and cALT2 mRNA levels significantly decreased irrespective of the diet. Consistently, ALT activity decreased in liver of treated animals. In the liver of S. aurata treated with chitosan-TPP-pCpG-si1sh1 nanoparticles, down-regulation of cALT expression increased the activity of key enzymes in glycolysis (6-phosphofructo-1-kinase and pyruvate kinase) and protein metabolism (glutamate dehydrogenase). Besides showing for the first time that administration of chitosan-TPP-pCpG-si1sh1 nanoparticles silences hepatic cALT expression in vivo, our data support that down-regulation of cALT could improve the use of dietary carbohydrates to obtain energy and spare protein catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anemaet IG, Metón I, Salgado MC, Fernández F, Baanante IV (2008) A novel alternatively spliced transcript of cytosolic alanine aminotransferase gene associated with enhanced gluconeogenesis in liver of Sparus aurata. Int J Biochem Cell Biol 40:2833–2844

    Article  PubMed  CAS  Google Scholar 

  • Anemaet IG, González JD, Salgado MC, Giralt M, Fernández F, Baanante IV, Metón I (2010) Transactivation of cytosolic alanine aminotransferase gene promoter by p300 and c-Myb. J Mol Endocrinol 45:119–132

    Article  PubMed  CAS  Google Scholar 

  • Ballarín-González B, Dagnaes-Hansen F, Fenton RA, Gao S, Hein S, Dong M, Kjems J, Howard KA (2013) Protection and systemic translocation of siRNA following oral administration of chitosan/siRNA nanoparticles. Mol Ther Nucleic Acids 2:e76

    Article  PubMed  PubMed Central  Google Scholar 

  • Bibiano Melo JF, Lundstedt LM, Metón I, Baanante IV, Moraes G (2006) Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae). Comp Biochem Physiol A Mol Integr Physiol 145:181–187

    Article  PubMed  Google Scholar 

  • Boonanuntanasarn S, Yoshizaki G, Takeuchi T (2003) Specific gene silencing using small interfering RNAs in fish embryos. Biochem Biophys Res Commun 310:1089–1095

    Article  PubMed  CAS  Google Scholar 

  • Borgogna M, Bellich B, Cesàro A (2011) Marine polysaccharides in microencapsulation and application to aquaculture: “from sea to sea”. Mar Drugs 9:2572–2604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  CAS  Google Scholar 

  • Cowey CB, Walton MJ (1989) Intermediary metabolism. In: Halver JE (ed) Fish Nutr. Academic, San Diego, CA, pp 260–321

    Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Fàbregas A, Miñarro M, García-Montoya E, Pérez-Lozano P, Carrillo C, Sarrate R, Sánchez N, Ticó JR, Suñé-Negre JM (2013) Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan-tripolyphosphate nanoparticles. Int J Pharm 446:199–204

    Article  PubMed  Google Scholar 

  • Fernández F, Miquel AG, Cordoba M, Varas M, Metón I, Caseras A, Baanante IV (2007) Effects of diets with distinct protein-to-carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurata, L.) fingerlings. J Exp Mar Biol Ecol 343:1–10

    Article  Google Scholar 

  • Figueiredo-Silva AC, Corraze G, Kaushik S, Peleteiro JB, Valente LMP (2010) Modulation of blackspot seabream (Pagellus bogaraveo) intermediary metabolic pathways by dispensable amino acids. Amino Acids 39:1401–1416

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fynn-Aikins K, Hughes SG, Vandenberg GW (1995) Protein retention and liver aminotransferase activities in Atlantic salmon fed diets containing different energy sources. Comp Biochem Physiol A Physiol 111:163–170

    Article  Google Scholar 

  • Gómez-Requeni P, Mingarro M, Kirchner S, Calduch-Giner J, Médale F, Corraze G, Panserat S, Martin SAM, Houlihan DF, Kaushik SJ, Pérez-Sánchez J (2003) Effects of dietary amino acid profile on growth performance, key metabolic enzymes and somatotropic axis responsiveness of gilthead sea bream (Sparus aurata). Aquaculture 220:749–767

    Article  Google Scholar 

  • González JD, Caballero A, Viegas I, Metón I, Jones JG, Barra J, Fernández F, Baanante IV (2012) Effects of alanine aminotransferase inhibition on the intermediary metabolism in Sparus aurata through dietary amino-oxyacetate supplementation. Br J Nutr 107:1747–1756

    Article  PubMed  Google Scholar 

  • Guo P, Coban O, Snead NM, Trebley J, Hoeprich S, Guo S, Shu Y (2010) Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 62:650–666

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hemre G-I, Mommsen TP, Krogdahl A (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194

    Article  CAS  Google Scholar 

  • Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14:476–484

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Fong C-W, Khor E, Lim L-Y (2005) Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release 106:391–406

    Article  PubMed  CAS  Google Scholar 

  • Jadhao SB, Yang RZ, Lin Q, Hu H, Anania FA, Shuldiner AR, Gong DW (2004) Murine alanine aminotransferase: cDNA cloning, functional expression, and differential gene regulation in mouse fatty liver. Hepatology 39:1297–1302

    Article  PubMed  Google Scholar 

  • Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225

    Article  PubMed  CAS  Google Scholar 

  • Kiang T, Wen J, Lim HW, Leong KW (2004) The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25:5293–5301

    Article  PubMed  CAS  Google Scholar 

  • Lavertu M, Méthot S, Tran-Khanh N, Buschmann MD (2006) High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27:4815–4824

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Zhou Y, Liu S, Zhong H, Zhang C, Kang X, Liu Y (2012) Characterization and dietary regulation of glutamate dehydrogenase in different ploidy fishes. Amino Acids 43:2339–2348

    Article  PubMed  CAS  Google Scholar 

  • Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 57:1–8

    Article  PubMed  CAS  Google Scholar 

  • Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70:399–421

    Article  PubMed  CAS  Google Scholar 

  • Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27

    Article  PubMed  CAS  Google Scholar 

  • Metón I, Mediavilla D, Caseras A, Cantó E, Fernández F, Baanante IV (1999) Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr 82:223–232

    PubMed  Google Scholar 

  • Metón I, Egea M, Fernández F, Eraso MC, Baanante IV (2004) The N-terminal sequence directs import of mitochondrial alanine aminotransferase into mitochondria. FEBS Lett 566:251–254

    Article  PubMed  Google Scholar 

  • Metón I, Egea M, Anemaet IG, Fernández F, Baanante IV (2006) Sterol regulatory element binding protein-1a transactivates 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene promoter. Endocrinology 147:3446–3456

    Article  PubMed  Google Scholar 

  • Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Physiol B Biochem Mol Biol 129:243–249

    Article  PubMed  CAS  Google Scholar 

  • Ragelle H, Vandermeulen G, Préat V (2013) Chitosan-based siRNA delivery systems. J Control Release 172:207–218

    Article  PubMed  CAS  Google Scholar 

  • Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS, D’Haese C, Nysten B, Braeckmans K, De Smedt SC, Jérôme C, Préat V (2014) Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Control Release 176:54–63

    Article  PubMed  CAS  Google Scholar 

  • Ramos EA, Relucio JLV, Torres-Villanueva CAT (2005) Gene expression in tilapia following oral delivery of chitosan-encapsulated plasmid DNA incorporated into fish feeds. Mar Biotechnol 7:89–94

    Article  PubMed  CAS  Google Scholar 

  • Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan—DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387–391

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Muros MJ, Garcia-Rejon L, Garcia-Salguero L, de la Higuera M, Lupianez JA (1998) Long-term nutritional effects on the primary liver and kidney metabolism in rainbow trout. Adaptive response to starvation and a high-protein, carbohydrate-free diet on glutamate dehydrogenase and alanine aminotransferase kinetics. Int J Biochem Cell Biol 30:55–63

    Article  PubMed  CAS  Google Scholar 

  • Sifuentes-Romero I, Milton SL, García-Gasca A (2011) Post-transcriptional gene silencing by RNA interference in non-mammalian vertebrate systems: where do we stand? Mutat Res 728:158–171

    Article  PubMed  CAS  Google Scholar 

  • Sohocki MM, Sullivan LS, Harrison WR, Sodergren EJ, Elder FF, Weinstock G, Tanase S, Daiger SP (1997) Human glutamate pyruvate transaminase (GPT): localization to 8q24.3, cDNA and genomic sequences, and polymorphic sites. Genomics 40:247–252

    Article  PubMed  CAS  Google Scholar 

  • Stanley CA (2009) Regulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children. Am J Clin Nutr 90:862S–866S

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Su J, Zhu Z, Wang Y, Xiong F, Zou J (2008) The cytomegalovirus promoter-driven short hairpin RNA constructs mediate effective RNA interference in zebrafish in vivo. Mar Biotechnol 10:262–269

    Article  PubMed  CAS  Google Scholar 

  • Techaarpornkul S, Wongkupasert S, Opanasopit P, Apirakaramwong A, Nunthanid J, Ruktanonchai U (2010) Chitosan-mediated siRNA delivery in vitro: effect of polymer molecular weight, concentration and salt forms. AAPS PharmSciTech 11:64–72

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terova G, Rimoldi S, Bernardini G, Saroglia M (2013) Inhibition of myostatin gene expression in skeletal muscle of fish by in vivo electrically mediated dsRNA and shRNAi delivery. Mol Biotechnol 54:673–684

    Article  PubMed  CAS  Google Scholar 

  • Wang S-L, Yao H-H, Guo L-L, Dong L, Li S-G, Gu Y-P, Qin Z-H (2009) Selection of optimal sites for TGFB1 gene silencing by chitosan-TPP nanoparticle-mediated delivery of shRNA. Cancer Genet Cytogenet 190:8–14

    Article  PubMed  CAS  Google Scholar 

  • Yang RZ, Blaileanu G, Hansen BC, Shuldiner AR, Gong DW (2002) cDNA cloning, genomic structure, chromosomal mapping, and functional expression of a novel human alanine aminotransferase. Genomics 79:445–450

    Article  PubMed  CAS  Google Scholar 

  • Zenke K, Kim KH (2008) Novel fugu U6 promoter driven shRNA expression vector for efficient vector based RNAi in fish cell lines. Biochem Biophys Res Commun 371:480–483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BIO2009-07589 (MCI, Spain) and AGL2012-33305 (MEC, Spain, co-funded by the European Regional Development Fund, ERDF, EC) grants. The authors thank Piscimar (Burriana, Spain) for providing the fish, the Aquarium of Barcelona for providing filtered seawater, Eurocoyal (Sant Cugat del Valles, Barcelona, Spain) for the provision of the fishmeal and Dr. José C. Perales (Departament de Ciències Fisiològiques II, Universitat de Barcelona, Spain) for providing the pCpG-siRNA and pCpG-siRNA-Scramble plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel V. Baanante.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, J.D., Silva-Marrero, J.I., Metón, I. et al. Chitosan-Mediated shRNA Knockdown of Cytosolic Alanine Aminotransferase Improves Hepatic Carbohydrate Metabolism. Mar Biotechnol 18, 85–97 (2016). https://doi.org/10.1007/s10126-015-9670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9670-8

Keywords

Navigation