Skip to main content
Log in

Structure and Characterization of Eriphia verrucosa Hemocyanin

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Arthropod hemocyanins (Hcs) are a family of large extracellular oxygen-transporting proteins with high molecular mass and hexameric or multi-hexameric molecular assembly. This study reports for the first time the isolation and characterization of the structure of an arthropod hemocyanin from crab Eriphia verrucosa (EvH) living in the Black Sea. Its oligomeric quaternary structure is based on different arrangements of a basic 6 × 75 kDa hexameric unit, and four of them (EvH1, EvH2, EvH3, and EvH4) were identified using ion-exchange chromatography. Subunit 3 (EvH3) shows high similarity scores (75.0, 87.5, 91.7, and 75.0 %, respectively) by comparison of the N-terminal sequence of subunit 1 from Cancer pagurus of the North Sea (Cp1), subunits 3 and 6 of Cancer magister (Cm3 and Cm6), and subunit 2 of Carcinus aestuarii (CaSS2), respectively. Moreover, a partial cDNA sequence (1309 bp) of E. verrucosa hemocyanin encoding a protein of 435 amino acids was isolated. The deduced amino acid sequence shows a high degree of similarity with subunits 3, 4, 5, and 6 of C. magister (81–84 %). Most of the hemocyanins are glycosylated, and three putative O-linkage sites were identified in the partial amino acid sequence of EvH at positions 444–446, 478–480, and 547–549, respectively. The higher stability of native Hc in comparison to its subunit EvH4 as determined by circular dichroism (CD) could be explained with the formation of a stabilizing quaternary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali S, Abbasi A, Stoeva S, Kayed R, Dolashka-Angelova P, Schwarz H, Voelter W (2000) Oxygen transport proteins: III. Structural studies of the scorpion Buthus sindicus hemocyanin, partial primary structure of its subunit Bsin1. Comp Biochem Physiol B 126:361–376

    Article  CAS  PubMed  Google Scholar 

  • Bruneaux M, Terrier P, Leize E, Mary J, Lallier FH, Zal F (2009) Structural study of Carcinus maenas hemocyanin by native ESI-MS: interaction with L-lactate and divalent cations. Proteins 77(3):589–601

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (1996) Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol 18:184–195

    Article  Google Scholar 

  • Burmester T (1999) Identification, molecular cloning and phylogenetic analysis of a nonrespiratory pseudo-hemocyanin of Homarus americanus. J Biol Chem 274:13217–13222

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (2004) Evolutionary history and diversity of arthropod hemocyanins. Micron 35:121–122

    Article  CAS  PubMed  Google Scholar 

  • Buzy A, Gagnon J, Lamy J, Thibault P, Forest E, Hudry-Clergeon G (1995) Complete amino acid sequence of the Aa6 subunit of the scorpion Androctonus australis hemocyanin determined by Edman degradation and mass spectrometry. Eur J Biochem 233:93–101

    Article  CAS  PubMed  Google Scholar 

  • Carpenter D, van Holde K (1973) Amino acid composition, amino-terminal analysis, and subunit structure of Cancer magister hemocyanin. Biochemistry 12:2231–2238

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Ho SH, Chen TI, Soong K, Chen IM, Cheng JH (2007) Identification of a female-specific hemocyanin in the mud crab, Scylla olivacea (Crustacea: Portunidae). Zool Stud 46:194–202

    Google Scholar 

  • Chomczynski P, Mackey K (1995) Substitution of chloroform by bromochloropropane in the single-step method of RNA isolation. Anal Biochem 225:163–164

    Article  CAS  PubMed  Google Scholar 

  • Coаtes J, Nairn J (2014) Diverse immune functions of hemocyanins. Dev Comp Immunol 45:43–55

  • Coаtes CJ, Whalley T, Nairn J (2012) Phagocytic activity of Limulus polyphemus amebocytes in vitro. J Invertebr Pathol 111(3):205–210

  • Cong Y, Zhang Q, Woolford D, Schweikardt T, Khant H, Dougherty M, Ludtke SJ, Chiu W, Decker H (2009) Structural mechanism of SDS-induced enzyme activity of scorpion hemocyaninrevealed by electron cryomicroscopy. Structure 17:749–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Decker H, Jaenicke E (2004) Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Dev Comp Immunol 28:673–687

    Article  CAS  PubMed  Google Scholar 

  • Di Giamberardino L (1967) Dissociation of Eriphia hemocyanin. Arch Biochem Biophys 118:273–278

    Article  PubMed  Google Scholar 

  • Dolashka-Angelova P, Hristova R, Stoeva S, Voelter W (1999) Spectroscopic properties of Carcinus aestuarii hemocyanin and its structural subunits. Spectrochim Acta Part A 55:2927–2934

    Article  Google Scholar 

  • Dolashka-Angelova P, Stoeva S, Hristova R, Schuetz J, Voelter W (2000) Structural and spectroscopic studies of the native hemocyanin from Maia squinado and its structural subunits. Spectrochim Acta A 56:1985–1999

    Article  Google Scholar 

  • Dolashka-Angelova P, Beltramini M, Dolashki A, Salvato B, Voelter V (2001) Carbohydrate composition of Carcinus aestuarii hemocyanin. Arch Biochem Biophys 389:153–158

    Article  CAS  PubMed  Google Scholar 

  • Dolashka-Angelova P, Dolashki A, Savvides SN, Hristova R, Van Beeumen J, Voelter W, Devreese B, Weser U, Di Muro P, Salvato B, Stevanovic S (2005) Structure of hemocyanin subunit CaeSS2 of the crustacean Mediterranean crab Carcinus aestuarii. J Biochem 138:303–312

    Article  CAS  PubMed  Google Scholar 

  • Durstewitz G, Terwilliger NB (1997) cDNA cloning of a developmentally regulated hemocyanin in the crustacean Cancer magister and phylogenetic analysis of the hemocyanin gene family. Mol Biol Evol 14:266–276

    Article  CAS  PubMed  Google Scholar 

  • Hagner-Holler S, Schoen A, Erker W, Marden JH, Rupprecht R, Decker H, Burmester T (2004) A respiratory hemocyanin from an insect. Proc Natl Acad Sci 101:871–874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hazes B, Magnus KA, Bonaventura C, Bonaventura J, Dauter Z, Kalk KH, Holx WG (1993) Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 A resolution: clues for a mechanism for allosteric regulation. Protein Sci 2:597–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herskovits TT (1988) Recent aspects of the subunit organization and dissociation of hemocyanins. Comp Biochem Physiol B 91:597–611

    CAS  PubMed  Google Scholar 

  • Hristova R, Dolashka P, Stoeva S, Voelter W, Salvato B, Genov N (1997) Spectroscopic properties and stability of hemocyanins. Spectrochim Acta A 53:471–478

    Article  Google Scholar 

  • Jaenicke E, Pairet B, Hartmann H, Decker H (2012) Crystallization and preliminary analysis of crystals of the 24-meric hemocyanin of the emperor scorpion (Pandinus imperator). PLoS ONE. doi:10.1371/journal.pone. 0032548

    PubMed Central  PubMed  Google Scholar 

  • Jekel PA, Bak HJ, Soeter NM, Vereijken JM, Beintema JJ (1988) Panulirus interruptus hemocyanin. The amino acid sequence of subunit b and anomalous behaviour of subunits a and b on polyacrylamide gel electrophoresis in the presence of SDS. Eur J Biochem 178:403–412

    Article  CAS  PubMed  Google Scholar 

  • Kölsch A, Hörnemann J, Wengenroth C, Hellmann N (2013) Differential regulation of hexameric and dodecameric hemocyanin from A. leptodactylus. Biochim Biophys Acta 1834:1853–1859

    Article  PubMed  Google Scholar 

  • Kostadinova E, Dolashka P, Velkova L, Dolashki A, Stevanovic S, Voelter W (2013) Positions of the glycans in molluscan hemocyanin, determined by fluorescence spectroscopy. J Fluoresc 23:753–760

    Article  CAS  PubMed  Google Scholar 

  • Kusche K, Burmester T (2001) Molecular cloning and evolution of lobster hemocyanin. Biochem Biophys Res Commun 282:887–892

    Article  CAS  PubMed  Google Scholar 

  • Markl J, Gebauer W, Runzler R, Avissar I (1984) Immunological correspondence between arthropod hemocyanin subunits. I. Scorpion (Leiurus, Androctonus) and spider (Eurypelma, Cupiennius) hemocyanin. Hoppe Seylers Z Physiol Chem 365:619–631

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Depoix F, Stohr M, Meissner U, Hagner-Holler S, Hammouti K (2007) Limulus polyphemus hemocyanin: 10 Å structure, sequence analysis, molecular modelling and rigid-body fitting reveal the interfaces between the eight hexamers. J Mol Biol 366:1332–1350

    Article  CAS  PubMed  Google Scholar 

  • Marxen JC, Pick C, Kwiatkowski M, Burmester T (2013) Molecular characterization and evolution of haemocyanin from the two freshwater shrimps Caridina multidentata (Stimpson, 1860) and Atyopsis moluccensis (De Haan, 1849). J Comp Physiol B 183:613–624

    Article  CAS  PubMed  Google Scholar 

  • Meissner U, Stohr M, Kusche K, Burmester T, Stark H, Orlova EV, Markl J (2003) Quaternary structure of the European spiny lobster Palinurus elephas 1x6-mer hemocyanin from cryoEM and amino acid sequence data. J Mol Biol 325:99–109

    Article  CAS  PubMed  Google Scholar 

  • Mičetic I, Losasso C, Di Muro P, Tognon G, Benedetti P, Beltramini M (2010) Solution structures of 2x6-meric and 4x6-meric hemocyanins of crustaceans Carcinus aestuarii, Squilla mantis and Upogebia pusilla. J Struct Biol 171:1–10

    Article  PubMed  Google Scholar 

  • Neuteboom B, Jekel PA, Beintema JJ (1992) Primary structure of hemocyanin subunit c from Panulirus interruptus. Eur J Biochem 206:243–249

    Article  CAS  PubMed  Google Scholar 

  • Sánchez D, Ganfornina MD, Gutierrez G, Bastani MJ (1998) Molecular characterization and phylogenetic relationship of a protein with potential oxygen-binding capabilities in the grasshopper embryo. A hemocyanin in insects? Mol Biol Evol 15:415–426

    Article  PubMed  Google Scholar 

  • Schartau W, Eyerle F, Reisinger P, Geisert H, Storz H, Linzen B (1983) Hemocyanins in spiders, XIX. Complete amino-acid sequence of subunit d from Eurypelma californicum hemocyanin, and comparison to chain e. Hoppe Seyler Z Physiol Chem 364:1383–1409

    Article  CAS  PubMed  Google Scholar 

  • Spinozzi F, Gatto S, De Filippis V, Carsughi F, Di Muro P, Beltramini M (2005) Contribution of the copper ions in the dinuclear active site to the stability of Carcinus aestuarii hemocyanin. Arch Biochem Biophys 439:42–52

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger NB, Ryan M, Phillips MR (2006) Crustacean hemocyanin gene family and microarray studies of expression change during eco-physiological stress. Integr Comp Biol 46:991–999

    Article  CAS  PubMed  Google Scholar 

  • Van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81

    Article  PubMed  Google Scholar 

  • Voit R, Feldmaier-Fuchs G, Schweikardt T, Decker H, Burmester T (2000) Complete sequence of the 24-mer hemocyanin of the tarantula Eurypelma californicum. Structure and intramolecular evolution of the subunits. J Biol Chem 275:39339–39344

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Hol WG (1989) Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution. J Mol Biol 209:249–279

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Xia X, Liu F, Chen X, Yang H, Ning Q (2012) Cloning and characterization of the hemocyanin gene of prawn Macrobrachium nipponense. Turk J Biochem 37:348–355

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Bulgarian Ministry of Education, projects DHRC /01/6 and “Young researchers” DMU 03/26, Deutsche Forschungsgemeinstchaft (DFG-STE 1819/5-1/2012),Germany, grant no. BG051PO001-3.3.06-0025, financed by the European Social Fund and Operational Programme Human Resources Development (2007–2013) and co-financed by Bulgarian Ministry of Education, Youth and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dolashka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolashki, A., Radkova, M., Todorovska, E. et al. Structure and Characterization of Eriphia verrucosa Hemocyanin. Mar Biotechnol 17, 743–752 (2015). https://doi.org/10.1007/s10126-015-9653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9653-9

Keywords

Navigation