Skip to main content
Log in

Intra-Colonial Functional Differentiation-Related Modulation of the Cellular Membrane in a Pocilloporid Coral Seriatopora caliendrum

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Scleractinian corals have displayed phenotypic gradients of polyps within a single genotypic colony, and this has profound implications for their biology. The intrinsic polymorphism of membrane lipids and the molecular interactions involved allow cells to dynamically organize their membranes to have physicochemical properties appropriate for their physiological requirements. To gain insight into the accommodation of the cellular membrane during ontogenetic shifts, intra-colony differences in the glycerophosphocholine profiling of a pocilloporid coral, Seriatopora caliendrum, were characterized using a previously validated method. Specifically, several major polyunsaturated phosphatidylcholines showed higher levels in the distal tissue of coral branches. In contrast, the corresponding molecules with 1–2-degree less unsaturation and plasmanylcholines were expressed more highly in the proximal tissue. The lipid profiles of these two colonial positions also contrasted sharply with regard to the saturated, monounsaturated, and lyso-glycerophosphocholine ratios. Based on the biochemical and biophysical properties of these lipids, the associated modulation of cellular membrane properties could be related to the physiological requirements, including coral growth and aging, of the functionally differentiated polyps. In this study, the metabolic regulation of membrane lipids involved in the functional differentiation of polyps within a S. caliendrum colony was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert DH, Anderson CE (1977) Ether-linked glycerolipids in human-brain tumors. Lipids 12:188–192

    Article  CAS  PubMed  Google Scholar 

  • Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:201–210

    Article  CAS  PubMed  Google Scholar 

  • Bachok Z, Mfilinge P, Tsuchiya M (2006) Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan. Coral Reefs 25:545–554

    Article  Google Scholar 

  • Baenziger JE, Jarrell HC, Smith CP (1992) Molecular motions and dynamics of a diunsaturated acyl chain in a lipid bilayer: implications for the role of polyunsaturation in biological membranes. Biochemistry 31:3377–3385

    Article  CAS  PubMed  Google Scholar 

  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20

    Article  PubMed  Google Scholar 

  • Bay LK, Nielsen HB, Jarmer H, Seneca F, van Oppen MJH (2009) Transcriptomic variation in a coral reveals pathways of clonal organization. Mar Genomics 2:119–125

    Article  PubMed  Google Scholar 

  • Beranova L, Cwiklik L, Jurkiewicz P, Hof M, Jungwirth P (2010) Oxidation changes physical properties of phospholipid bilayers: fluorescence spectroscopy and molecular simulations. Langmuir 26:6140–6144

    Article  CAS  PubMed  Google Scholar 

  • Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    Article  CAS  PubMed  Google Scholar 

  • Chabot MC, Greene DG, Brockschmidt JK, Capizzi RL, Wykle RL (1990) Ether-linked phosphoglyceride content of human leukemia cells. Cancer Res 50:7174–7178

    CAS  PubMed  Google Scholar 

  • Chen CA, Yang YW, Wei NV, Tsai WS, Fang LS (2005) Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan. Coral Reefs 24:11–22

    Article  CAS  Google Scholar 

  • Chen X, Gross RW (1994) Phospholipid subclass-specific alterations in the kinetics of ion transport across biologic membranes. Biochemistry 33:13769–13774

    Article  CAS  PubMed  Google Scholar 

  • Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clode PL, Marshall AT (2002) Low temperature X-ray microanalysis of calcium in a scleractinian coral: evidence of active transport mechanisms. J Exp Biol 205:3543–3552

    CAS  PubMed  Google Scholar 

  • D’Angelo C, Smith EG, Oswald F, Burt J, Tchernov D, Wiedenmann J (2012) Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 31:1045–1056

    Article  Google Scholar 

  • Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543

    Article  CAS  PubMed  Google Scholar 

  • Edes I, Kranias EG (2001) Ca2+-ATPases. In: Sperelakis N (ed) Cell physiology source book. Academic Press, San Diego, pp 271–282

    Chapter  Google Scholar 

  • Edmunds PJ (2005) The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef. Oecologia 140:350–364

    Article  Google Scholar 

  • Elahi R, Edmunds PJ (2007) Tissue age affects calcification in the scleractinian coral Madracis mirabilis. Biol Bull 212:20–28

    Article  PubMed  Google Scholar 

  • Fang LS, Chen YWJ, Chen CS (1989) Why does the white tip of stony coral grow so fast without zooxanthellae? Mar Biol 103:359–363

    Article  Google Scholar 

  • Ferrara GB, Murgia B, Parodi AM, Valisano L, Cerrano C, Palmisano G, Bavestrello G, Sara M (2006) The assessment of DNA from marine organisms via a modified salting-out protocol. Cell Mol Biol Lett 11:155–160

    Article  CAS  PubMed  Google Scholar 

  • Freikman I, Ringel I, Fibach E (2011) Oxidative stress-induced membrane shedding from RBCs is Ca flux-mediated and affects membrane lipid composition. J Membr Biol 240:73–82

    Article  CAS  PubMed  Google Scholar 

  • Fuller N, Rand RP (2001) The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J 81:243–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gladfelter EH, Michel G, Sanfelici A (1989) Metabolic gradients along a branch of the reef coral Acropora palmata. Bull Mar Sci 44:1166–1173

    Google Scholar 

  • Grosman N (2001) Similar effects of ether phospholipids, PAF and lyso-PAF on the Ca2+-ATPase activity of rat brain synaptosomes and leukocyte membranes. Int Immunopharmacol 1:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Hall VR (1997) Interspecific differences in the regeneration of artificial injuries on scleractinian corals. J Exp Mar Biol Ecol 121:9–23

    Article  Google Scholar 

  • Highsmith RC, Riggs AC, D’Antonio CM (1980) Survival of hurricane-generated coral fragments and a disturbance model of reef calcification/growth rates. Oecologia 46:322–329

    Article  Google Scholar 

  • Hull MC, Sauer DB, Hovis JS (2004) Influence of lipid chemistry on the osmotic response of cell membranes: effect of non-bilayer forming lipids. J Phys Chem B 108:15890–15895

    Article  CAS  Google Scholar 

  • Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci U S A 101:8251–8253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kates M, Paradis M (1973) Phospholipid desaturation in Candida lipolytica as a function of temperature and growth. Can J Biochem 51:184–197

    Article  CAS  PubMed  Google Scholar 

  • Keshavmurthy S, Hsu CM, Kuo CY, Meng PJ, Wang JT, Chen CA (2012) Symbiont communities and host genetic structure of the brain coral Platygyra verweyi, at the outlet of a nuclear power plant and adjacent areas. Mol Ecol 21:4393–4407

    Article  PubMed  Google Scholar 

  • Komatsu H, Okada S (1995) Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: participation of interdigitated membrane formation in their processes. Biochim Biophys Acta 1235:270–280

    Article  PubMed  Google Scholar 

  • Kraichely RE, Strege PR, Sarr MG, Kendrick ML, Farrugia G (2009) Lysophosphatidyl choline modulates mechanosensitive L-type Ca2+ current in circular smooth muscle cells from human jejunum. Am J Physiol Gastrointest Liver Physiol 296:G833–G839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipids rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

  • Lu JZ, Hao YH, Chen JW (2001) Effect of cholesterol on the formation of an interdigitated gel phase in lysophosphatidylcholine and phosphatidylcholine binary mixtures. J Biochem 129:891–898

    Article  CAS  PubMed  Google Scholar 

  • Mayfield AB, Hsiao YY, Fan TY, Chen CS, Gates RD (2010) Evaluating the temporal stability of stress-activated protein kinase and cytoskeleton gene expression in the Pacific reef corals Pocillopora damicornis and Seriatopora hystrix. J Exp Mar Biol Ecol 395:215–222

    Article  Google Scholar 

  • Meesters EH, Bak RPM (1995) Age-related deterioration of a physiological function in the branching coral Acropora palmate. Mar Ecol Prog Ser 121:203–209

    Article  Google Scholar 

  • Meyer zu Heringdorf D, Jakobs KH (2007) Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 1768:923–940

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mykytczuka NCS, Trevorsb JT, Ferronic GD, Leduca LG (2011) Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans. Microbiol Res 166:186–206

    Article  Google Scholar 

  • Okita M, Gaudette DC, Mills GB, Holub BJ (1997) Elevated level and altered fatty acid composition of plasma lysophosphatidylcholine (lysoPC) in ovarian cancer patients. Int J Cancer 71:31–34

    Article  CAS  PubMed  Google Scholar 

  • Oku H, Yamashiro H, Onaga K, Iwasaki H, Takara K (2002) Lipid distribution in branching coral Montipora digitata. Fish Sci 68:517–522

    Article  CAS  Google Scholar 

  • Olbrich K, Rawicz W, Needham D, Evans E (2000) Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys J 79:321–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ollila S, Hyvonen MT, Vattulainen I (2007) Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. J Phys Chem B 111:3139–3150

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R, Barja G, Portero-Otin M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span. Ann NY Acad Sci 959:475–490

    Article  CAS  PubMed  Google Scholar 

  • Pandey PR, Roy S (2011) Headgroup mediated water insertion into the DPPC bilayer: a molecular dynamics study. J Phys Chem B 115:3155–3163

    Article  CAS  PubMed  Google Scholar 

  • Rozentsvet OA, Nesterov VN, Sinyutina NF (2012) The effect of copper ions on the lipid composition of subcellular membranes in Hydrilla verticillata. Chemosphere 89:108–113

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Asaoka Y, Nishizuka Y (1993) Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids. FEBS Lett 320:47–51

    Article  CAS  PubMed  Google Scholar 

  • Sellmayer A, Danesch U, Weber PC (1996) Effects of different polyunsaturated fatty acids on growth-related early gene expression and cell growth. Lipids 31:S37–S40

    Article  CAS  PubMed  Google Scholar 

  • Shier WT, Baldwin JH, Nilsen-Hamilton M, Hamilton RT, Thanassi NM (1976) Regulation of guanylate and adenylate cyclase activities by lysolecithin. Proc Natl Acad Sci U S A 73:1586–1590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shoemaker SD, Vanderlick TK (2002) Stress-induced leakage from phospholipid vesicles: effect of membrane composition. Ind Eng Chem Res 41:324–329

    Article  CAS  Google Scholar 

  • Smith HL, Howland MC, Szmodis AW, Li Q, Daemen LL, Parikh AN, Majewski J (2009) Early stages of oxidative stress-induced membrane permeabilization: a neutron reflectometry study. J Am Chem Soc 131:3631–3638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52:539–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soong K, Lang JC (1992) Reproductive integration in reef corals. Biol Bull 183:418–431

    Article  Google Scholar 

  • Stark G (2005) Functional consequences of oxidative membrane damage. J Membrane Biol 205:1–16

    Article  CAS  Google Scholar 

  • Szule JA, Fuller NL, Rand RP (2002) The effects of acyl chain length and saturation of diacylglycerols and phosphatidylcholines on membrane monolayer curvature. Biophys J 83:977–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tambutte S, Holcomb M, Ferrier-Pages C, Reynaud S, Tambutte E, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408:58–78

    Article  Google Scholar 

  • Tang CH, Tsao PN, Lin CY, Fang LS, Lee SH, Wang WH (2012) Phosphorylcholine-containing lipid molecular species profiling in biological tissue using a fast HPLC/QqQ-MS method. Anal Bioanal Chem 404:2949–2961

    Article  CAS  PubMed  Google Scholar 

  • Tang CH, Lin CY, Lee SH, Wang WH (2014a) Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum. Aquat Toxicol 148:1–8

    Article  CAS  PubMed  Google Scholar 

  • Tang CH, Fang LS, Fan TY, Wang LH, Lin CY, Lee SH, Wang WH (2014b) Cellular membrane accommodation to thermal oscillations in the coral Seriatopora caliendrum. PLoS ONE 9(8), e105345. doi:10.1371/journal.pone.0105345

    Article  PubMed Central  PubMed  Google Scholar 

  • Trump BF, Berezesky IK (1996) The role of altered [Ca2+]i regulation in apoptosis, oncosis, and necrosis. Biochim Biophys Acta 1313:173–178

    Article  PubMed  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed Central  PubMed  Google Scholar 

  • Vigh L, Escriba PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horvath I, Harwood JL (2005) The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog Lipid Res 44:303–344

    Article  CAS  PubMed  Google Scholar 

  • Yamashiro H, Oku H, Onaga K, Iwasaki H, Takara K (2001) Coral tumors store reduced level of lipids. J Exp Mar Biol Ecol 265:171–179

    Article  CAS  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  CAS  PubMed  Google Scholar 

  • Zehmer JK, Hazel JR (2005) Thermally induced changes in lipid composition of raft and non-raft regions of hepatocyte plasma membranes of rainbow trout. J Exp Biol 208:4283–4290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the Ministry of Science & Technology (MOST 104-2221-E-291-001), National Museum of Marine Biology & Aquarium and National Dong Hwa University in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Ho Tang or Wei-Hsien Wang.

Additional information

Ping-Chang Ku contributed to this work as one of the first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, CH., Ku, PC., Lin, CY. et al. Intra-Colonial Functional Differentiation-Related Modulation of the Cellular Membrane in a Pocilloporid Coral Seriatopora caliendrum . Mar Biotechnol 17, 633–643 (2015). https://doi.org/10.1007/s10126-015-9645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9645-9

Keywords

Navigation