Skip to main content
Log in

Integration of Transcriptomic and Proteomic Approaches Provides a Core Set of Genes for Understanding of Scallop Attachment

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Attachment is an essential physiological process in life histories of many marine organisms. Using a combination of transcriptomic and proteomic approach, scallop byssal proteins (Sbps) and their associated regulatory network genes were investigated for the first time. We built the first scallop foot transcriptome library, and 75 foot-specific genes were identified. Through integration of transcriptomic-proteomic approach, seven unique Sbps were identified. Of them, three showed significant amino acid sequence homology to known proteins. In contrast, the rest did not show significant protein matches, indicating they are possibly novel proteins. Our transcriptomic and proteomic analyses also suggest that post-translational modification may be one of the significant features for Sbps as well. Taken together, our study provides the first multidimensional collection of a core set of genes that may be potentially involved in scallop byssal attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alejandrino A, Puslednik L, Serb JM (2011) Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evol Biol 11:164

    Article  PubMed Central  PubMed  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Cha HJ, Hwang DS, Lim S (2008) Development of bioadhesives from marine mussels. Biotechnol J 3:631–638

    Article  CAS  PubMed  Google Scholar 

  • Gantayet A, Ohana L, Sone ED (2013) Byssal proteins of the freshwater zebra mussel, Dreissena polymorpha. Biofouling 29:77–85

    Article  CAS  PubMed  Google Scholar 

  • Gantayet A, Rees DJ, Sone ED (2014) Novel proteins identified in the insoluble byssal matrix of the freshwater zebra mussel. Mar Biotechnol (NY) 16:144–155

    Article  CAS  Google Scholar 

  • Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gruffydd LD (1978) The byssus and byssus glands in Chlamys islandica and other scallops (lamellibranchia). Zool Script 7:277–285

    Article  Google Scholar 

  • Hagenau A, Scheidt HA, Serpell L, Huster D, Scheibel T (2009) Structural analysis of proteinaceous components in Byssal threads of the mussel Mytilus galloprovincialis. Macromol Biosci 9:162–168

    Article  CAS  PubMed  Google Scholar 

  • Harrington MJ, Waite JH (2007) Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. J Exp Biol 210:4307–4318

    Article  CAS  PubMed  Google Scholar 

  • Hennebert E, Wattiez R, Waite JH, Flammang P (2012) Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Biofouling 28:289–303

    Article  CAS  PubMed  Google Scholar 

  • Hennebert E, Wattiez R, Demeuldre M, Ladurner P, Hwang DS, Waite JH, Flammang P (2014) Sea star tenacity mediated by a protein that fragments, then aggregates. Proc Natl Acad Sci U S A 111:6317–6322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holm ER (2012) Barnacles and biofouling. Integr Comp Biol 52:348–355

    Article  PubMed  Google Scholar 

  • Holten-Andersen N, Waite JH (2008) Mussel-designed protective coatings for compliant substrates. J Dent Res 87:701–709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang DS, Zeng H, Masic A, Harrington MJ, Israelachvili JN, Waite JH (2010) Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J Biol Chem 285:25850–25858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue K, Takeuchi Y, Miki D, Odo S (1995) Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family. J Biol Chem 270:6698–6701

    Article  CAS  PubMed  Google Scholar 

  • Kamino K (2001) Novel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequence. Biochem J 356:503–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamino K (2008) Underwater adhesive of marine organisms as the vital link between biological science and material science. Mar Biotechnol (NY) 10:111–121

    Article  CAS  Google Scholar 

  • Kamino K, Nakano M, Kanai S (2012) Significance of the conformation of building blocks in curing of barnacle underwater adhesive. FEBS J 279:1750–1760

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci U S A 103:12999–13003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Q, Gourdon D, Sun C, Holten-Andersen N, Anderson TH, Waite JH, Israelachvili JN (2007) Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci U S A 104:3782–3786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehdizadeh M, Yang J (2013) Design strategies and applications of tissue bioadhesives. Macromol Biosci 13:271–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10:219

    Article  PubMed Central  PubMed  Google Scholar 

  • Mori Y, Urushida Y, Nakano M, Uchiyama S, Kamino K (2007) Calcite-specific coupling protein in barnacle underwater cement. FEBS J 274:6436–6446

    Article  CAS  PubMed  Google Scholar 

  • Qin XX, Coyne KJ, Waite JH (1997) Tough tendons. Mussel byssus has collagen with silk-like domains. J Biol Chem 272:32623–32627

    Article  CAS  PubMed  Google Scholar 

  • Rebl A, Korytar T, Kobis JM, Verleih M, Krasnov A, Jaros J, Kuhn C, Kollner B, Goldammer T (2014) Transcriptome profiling reveals insight into distinct immune responses to Aeromonas salmonicida in gill of two rainbow trout strains. Mar Biotechnol (NY) 16:333–348

    Article  CAS  Google Scholar 

  • Shao H, Bachus KN, Stewart RJ (2009) A water-borne adhesive modeled after the sandcastle glue of P. californica. Macromol Biosci 9:464–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi M, Lin Y, Xu G, Xie L, Hu X, Bao Z, Zhang R (2013) Characterization of the Zhikong scallop (Chlamys farreri) mantle transcriptome and identification of biomineralization-related genes. Mar Biotechnol (NY) 15:706–715

    Article  CAS  Google Scholar 

  • Silverman HG, Roberto FF (2007) Understanding marine mussel adhesion. Mar Biotechnol (NY) 9:661–681

    Article  CAS  Google Scholar 

  • Stewart RJ (2011) Protein-based underwater adhesives and the prospects for their biotechnological production. Appl Microbiol Biotechnol 89:27–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun J, Zhang H, Wang H, Heras H, Dreon MS, Ituarte S, Ravasi T, Qian PY, Qiu JW (2012) First proteome of the egg perivitelline fluid of a freshwater gastropod with aerial oviposition. J Proteome Res 11:4240–4248

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Chen Q, Lun JC, Xu J, Qiu JW (2013) PcarnBase: development of a transcriptomic database for the brain coral Platygyra carnosus. Mar Biotechnol (NY) 15:244–251

    Article  Google Scholar 

  • Waite JH (2008) Mussel power. Nat Mater 7:8–9

    Article  CAS  PubMed  Google Scholar 

  • Waite JH, Broomell CC (2012) Changing environments and structure–property relationships in marine biomaterials. J Exp Biol 215:873–883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Werner GD, Gemmell P, Grosser S, Hamer R, Shimeld SM (2013) Analysis of a deep transcriptome from the mantle tissue of Patella vulgata Linnaeus (Mollusca: Gastropoda: Patellidae) reveals candidate biomineralising genes. Mar Biotechnol (NY) 15:230–243

    Article  CAS  Google Scholar 

  • Xiaoli Hu ZB, Jingjie H, Shao M, Zhang L, Bi K, Zhan A, Huang X (2006) Cloning and characterization of tryptophan 2,3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904). Aquacult Res 37:1187–1194

    Article  Google Scholar 

  • Zhang L, Li L, Zhu Y, Zhang G, Guo X (2014) Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica). Mar Biotechnol (NY) 16:17–33

    Article  Google Scholar 

  • Zhao H, Waite JH (2005) Coating proteins: structure and cross-linking in fp-1 from the green shell mussel Perna canaliculus. Biochemistry 44:15915–15923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao H, Waite JH (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem 281:26150–26158

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Robertson NB, Jewhurst SA, Waite JH (2006) Probing the adhesive footprints of Mytilus californianus byssus. J Biol Chem 281:11090–11096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National High Technology Research and Development Program of China (2012AA092204), National Natural Science Foundation of China (31472258) and Natural Science Foundation for Distinguished Young Scholars of Shandong Province (JQ201308).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenmin Bao or Weizhi Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

All Mfp-relevant genes in GenBank; (DOC 35 kb)

Figure S1

Amino acids sequence alignment for the putative Sbp components with their homologs. (DOC 2141 kb)

ESM 1

The significant enriched terms were highlighted in different sheets for biological process, molecular function and cellular component, respectively. (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Zhang, L., Sun, Y. et al. Integration of Transcriptomic and Proteomic Approaches Provides a Core Set of Genes for Understanding of Scallop Attachment. Mar Biotechnol 17, 523–532 (2015). https://doi.org/10.1007/s10126-015-9635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9635-y

Keywords

Navigation