Abstract
Attachment is an essential physiological process in life histories of many marine organisms. Using a combination of transcriptomic and proteomic approach, scallop byssal proteins (Sbps) and their associated regulatory network genes were investigated for the first time. We built the first scallop foot transcriptome library, and 75 foot-specific genes were identified. Through integration of transcriptomic-proteomic approach, seven unique Sbps were identified. Of them, three showed significant amino acid sequence homology to known proteins. In contrast, the rest did not show significant protein matches, indicating they are possibly novel proteins. Our transcriptomic and proteomic analyses also suggest that post-translational modification may be one of the significant features for Sbps as well. Taken together, our study provides the first multidimensional collection of a core set of genes that may be potentially involved in scallop byssal attachment.
Similar content being viewed by others
References
Alejandrino A, Puslednik L, Serb JM (2011) Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evol Biol 11:164
Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362
Cha HJ, Hwang DS, Lim S (2008) Development of bioadhesives from marine mussels. Biotechnol J 3:631–638
Gantayet A, Ohana L, Sone ED (2013) Byssal proteins of the freshwater zebra mussel, Dreissena polymorpha. Biofouling 29:77–85
Gantayet A, Rees DJ, Sone ED (2014) Novel proteins identified in the insoluble byssal matrix of the freshwater zebra mussel. Mar Biotechnol (NY) 16:144–155
Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652
Gruffydd LD (1978) The byssus and byssus glands in Chlamys islandica and other scallops (lamellibranchia). Zool Script 7:277–285
Hagenau A, Scheidt HA, Serpell L, Huster D, Scheibel T (2009) Structural analysis of proteinaceous components in Byssal threads of the mussel Mytilus galloprovincialis. Macromol Biosci 9:162–168
Harrington MJ, Waite JH (2007) Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. J Exp Biol 210:4307–4318
Hennebert E, Wattiez R, Waite JH, Flammang P (2012) Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Biofouling 28:289–303
Hennebert E, Wattiez R, Demeuldre M, Ladurner P, Hwang DS, Waite JH, Flammang P (2014) Sea star tenacity mediated by a protein that fragments, then aggregates. Proc Natl Acad Sci U S A 111:6317–6322
Holm ER (2012) Barnacles and biofouling. Integr Comp Biol 52:348–355
Holten-Andersen N, Waite JH (2008) Mussel-designed protective coatings for compliant substrates. J Dent Res 87:701–709
Hwang DS, Zeng H, Masic A, Harrington MJ, Israelachvili JN, Waite JH (2010) Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J Biol Chem 285:25850–25858
Inoue K, Takeuchi Y, Miki D, Odo S (1995) Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family. J Biol Chem 270:6698–6701
Kamino K (2001) Novel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequence. Biochem J 356:503–507
Kamino K (2008) Underwater adhesive of marine organisms as the vital link between biological science and material science. Mar Biotechnol (NY) 10:111–121
Kamino K, Nakano M, Kanai S (2012) Significance of the conformation of building blocks in curing of barnacle underwater adhesive. FEBS J 279:1750–1760
Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci U S A 103:12999–13003
Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132
Lin Q, Gourdon D, Sun C, Holten-Andersen N, Anderson TH, Waite JH, Israelachvili JN (2007) Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci U S A 104:3782–3786
Mehdizadeh M, Yang J (2013) Design strategies and applications of tissue bioadhesives. Macromol Biosci 13:271–288
Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10:219
Mori Y, Urushida Y, Nakano M, Uchiyama S, Kamino K (2007) Calcite-specific coupling protein in barnacle underwater cement. FEBS J 274:6436–6446
Qin XX, Coyne KJ, Waite JH (1997) Tough tendons. Mussel byssus has collagen with silk-like domains. J Biol Chem 272:32623–32627
Rebl A, Korytar T, Kobis JM, Verleih M, Krasnov A, Jaros J, Kuhn C, Kollner B, Goldammer T (2014) Transcriptome profiling reveals insight into distinct immune responses to Aeromonas salmonicida in gill of two rainbow trout strains. Mar Biotechnol (NY) 16:333–348
Shao H, Bachus KN, Stewart RJ (2009) A water-borne adhesive modeled after the sandcastle glue of P. californica. Macromol Biosci 9:464–471
Shi M, Lin Y, Xu G, Xie L, Hu X, Bao Z, Zhang R (2013) Characterization of the Zhikong scallop (Chlamys farreri) mantle transcriptome and identification of biomineralization-related genes. Mar Biotechnol (NY) 15:706–715
Silverman HG, Roberto FF (2007) Understanding marine mussel adhesion. Mar Biotechnol (NY) 9:661–681
Stewart RJ (2011) Protein-based underwater adhesives and the prospects for their biotechnological production. Appl Microbiol Biotechnol 89:27–33
Sun J, Zhang H, Wang H, Heras H, Dreon MS, Ituarte S, Ravasi T, Qian PY, Qiu JW (2012) First proteome of the egg perivitelline fluid of a freshwater gastropod with aerial oviposition. J Proteome Res 11:4240–4248
Sun J, Chen Q, Lun JC, Xu J, Qiu JW (2013) PcarnBase: development of a transcriptomic database for the brain coral Platygyra carnosus. Mar Biotechnol (NY) 15:244–251
Waite JH (2008) Mussel power. Nat Mater 7:8–9
Waite JH, Broomell CC (2012) Changing environments and structure–property relationships in marine biomaterials. J Exp Biol 215:873–883
Werner GD, Gemmell P, Grosser S, Hamer R, Shimeld SM (2013) Analysis of a deep transcriptome from the mantle tissue of Patella vulgata Linnaeus (Mollusca: Gastropoda: Patellidae) reveals candidate biomineralising genes. Mar Biotechnol (NY) 15:230–243
Xiaoli Hu ZB, Jingjie H, Shao M, Zhang L, Bi K, Zhan A, Huang X (2006) Cloning and characterization of tryptophan 2,3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904). Aquacult Res 37:1187–1194
Zhang L, Li L, Zhu Y, Zhang G, Guo X (2014) Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica). Mar Biotechnol (NY) 16:17–33
Zhao H, Waite JH (2005) Coating proteins: structure and cross-linking in fp-1 from the green shell mussel Perna canaliculus. Biochemistry 44:15915–15923
Zhao H, Waite JH (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem 281:26150–26158
Zhao H, Robertson NB, Jewhurst SA, Waite JH (2006) Probing the adhesive footprints of Mytilus californianus byssus. J Biol Chem 281:11090–11096
Acknowledgments
This work was supported by National High Technology Research and Development Program of China (2012AA092204), National Natural Science Foundation of China (31472258) and Natural Science Foundation for Distinguished Young Scholars of Shandong Province (JQ201308).
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
Table S1
All Mfp-relevant genes in GenBank; (DOC 35 kb)
Figure S1
Amino acids sequence alignment for the putative Sbp components with their homologs. (DOC 2141 kb)
ESM 1
The significant enriched terms were highlighted in different sheets for biological process, molecular function and cellular component, respectively. (XLSX 17 kb)
Rights and permissions
About this article
Cite this article
Miao, Y., Zhang, L., Sun, Y. et al. Integration of Transcriptomic and Proteomic Approaches Provides a Core Set of Genes for Understanding of Scallop Attachment. Mar Biotechnol 17, 523–532 (2015). https://doi.org/10.1007/s10126-015-9635-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10126-015-9635-y