Marine Biotechnology

, Volume 17, Issue 3, pp 353–363 | Cite as

RNA Sequencing to Study Gene Expression and SNP Variations Associated with Growth in Zebrafish Fed a Plant Protein-Based Diet

  • Pilar E. Ulloa
  • Gonzalo Rincón
  • Alma Islas-Trejo
  • Cristian Araneda
  • Patricia Iturra
  • Roberto Neira
  • Juan F. Medrano
Original Article

Abstract

The objectives of this study were to measure gene expression in zebrafish and then identify SNP to be used as potential markers in a growth association study. We developed an approach where muscle samples collected from low- and high-growth fish were analyzed using RNA-Sequencing (RNA-seq), and SNP were chosen from the genes that were differentially expressed between the low and high groups. A population of 24 families was fed a plant protein-based diet from the larval to adult stages. From a total of 440 males, 5 % of the fish from both tails of the weight gain distribution were selected. Total RNA was extracted from individual muscle of 8 low-growth and 8 high-growth fish. Two pooled RNA-Seq libraries were prepared for each phenotype using 4 fish per library. Libraries were sequenced using the Illumina GAII Sequencer and analyzed using the CLCBio genomic workbench software. One hundred and twenty-four genes were differentially expressed between phenotypes (p value < 0.05 and FDR < 0.2). From these genes, 164 SNP were selected and genotyped in 240 fish samples. Marker-trait analysis revealed 5 SNP associated with growth in key genes (Nars, Lmod2b, Cuzd1, Acta1b, and Plac8l1). These genes are good candidates for further growth studies in fish and to consider for identification of potential SNPs associated with different growth rates in response to a plant protein-based diet.

Keywords

Zebrafish Gene expression Single nucleotide polymorphism Dietary plant proteins Growth association analysis 

Supplementary material

10126_2015_9624_MOESM1_ESM.docx (22 kb)
Supplementary file 1(DOCX 22 kb)
10126_2015_9624_MOESM2_ESM.docx (27 kb)
Supplementary file 2(DOCX 26 kb)
10126_2015_9624_MOESM3_ESM.docx (23 kb)
Supplementary file 3(DOCX 22 kb)
10126_2015_9624_MOESM4_ESM.docx (23 kb)
Supplementary file 4(DOCX 23 kb)

References

  1. Abdul Ajees A, Gunasekaran K, Volanakis JE, Narayana SVL, Kotwal GJ, Murthy HM (2006) The structure of complement C3b provides insights into complement activation and regulation. Nature 444:221–225CrossRefPubMedGoogle Scholar
  2. Alami-Durante H, Médale F, Cluzeaud M, Kaushik SJ (2010) Skeletal muscle growth dynamics and expression of related genes in white and red muscles of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal. Aquaculture 303:50–58CrossRefGoogle Scholar
  3. Baranski M, Moen T, Vage D (2010) Mapping of quantitative trait loci for flesh colour and growth traits in Atlantic salmon (Salmo salar). Genet Sel Evol 42:17CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R (2010) Aquaculture: global status and trends. Philos Trans R Soc Lond B Biol Sci 365:2897–2912CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bouza C, Hermida M, Pardo B, Vera M, Fernandez C, De La Herran R, Navajas-Perez R, Alvarez-Dios JA, Gomez-Tato A, Martinez P (2012) An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. BMC Genet 13:54CrossRefPubMedCentralPubMedGoogle Scholar
  6. Brand M, Granato M, Nüsslein-Volhard C (2002) Keeping and raising zebrafish. In: Nüsslein-Volhard C, Dahm R (eds) Zebrafish. Oxford University Press, OxfordGoogle Scholar
  7. Cánovas A, Rincon G, Islas-Trejo A, Wickramasinghe S, Medrano JF (2010) SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm Genome 21:592–598CrossRefPubMedCentralPubMedGoogle Scholar
  8. Cánovas A, Rincon G, Islas-Trejo A, Jimenez-Flores R, Laubscher A, Medrano JF (2013) RNA sequencing to study gene expression and single nucleotide polymorphism variation associated with citrate content in cow milk. J Dairy Sci 96:2637–2648CrossRefPubMedGoogle Scholar
  9. Castano-Sánchez C, Fuji K, Ozaki A, Hasegawa O, Sakamoto T, Morishima K, Nakayama I, Fujiwara A, Masaoka T, Okamoto H, Hayashida K, Tagami M, Kawai J, Hayashizaki Y, Okamoto N (2010) A second generation genetic linkage map of Japanese flounder (Paralichthys olivaceus). BMC Genomics 11:554CrossRefPubMedCentralPubMedGoogle Scholar
  10. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. doi: 10.1155/2008/619832
  11. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefPubMedGoogle Scholar
  12. Cui J, Liu S, Zahng B, Wang H, Sun H, Song S, Qui X, Liu Y, Wang X, Jiang Z, Liu Z (2014a) Transcriptome analysis of the gill and swimbladder of Takifugu rubripens by RNA-Seq. PLoS ONE 9:e85505CrossRefPubMedCentralPubMedGoogle Scholar
  13. Cui J, Wang H, Liu S, Zhu L, Qiu X, Jiang Z, Wang X, Liu Z (2014b) SNP discovery from transcriptome of the swimbladder of Takifugu rubripes. PLoS ONE 9:e92502CrossRefPubMedCentralPubMedGoogle Scholar
  14. FAO (2012) El estado mundial de la pesca y la acuicultura. Organización de las Naciones Unidas para la Alimentación y la Agricultura, ItalyGoogle Scholar
  15. Fontaínhas-Fernandes A, Gomes E, Reis-Henriques MA, Coimbra J (1999) Replacement of fish meal by plant proteins in the diet of Nile tilapia: digestibility and growth performance. Aquac Int 7:57–67CrossRefGoogle Scholar
  16. Gómez-Requeni P, Mingarroa M, Calduch-Ginera J, Médale F, Martinc SAM, Houlihanc DF, Kaushik S, Pérez-Sánchez J (2004) Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232:493–510CrossRefGoogle Scholar
  17. Guyon R, Senger F, Rakotomanga M, Sadequi N, Volckaert FAM, Hitte C, Galibert F (2010) A radiation hybrid map of the European sea bass (Dicentrarchus labrax) based on 1581 markers: synteny analysis with model fish genomes. Genomics 96:228–238CrossRefPubMedGoogle Scholar
  18. Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41:770–776CrossRefGoogle Scholar
  19. Hedrera M, Galdames J, Gimenez-Reyes M, Reyes A, Avandaño-Herrera R, Romero J, Feijoo CG (2013) Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS ONE 8:e69983CrossRefPubMedCentralPubMedGoogle Scholar
  20. Houston RD, Taggart JB, Cezard T, Bekaert M, Lowe NR, Downing A, Talbot R, Bishop SC, Archibald AL, Bron JE, Penman DJ, Davassi A, Brew F, Tinch A, Gharbi K, Hamilton A (2014) Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 15:90CrossRefPubMedCentralPubMedGoogle Scholar
  21. Hutson AM, Liu Z, Kucuktas H, Umali-Maceina G, Su B, Dunham RA (2014) Quantitative trait loci map for growth and morphometric traits using a channel catfish x blue catfish interspecific hybrid system. J Anim Sci 92:1850–1865CrossRefPubMedGoogle Scholar
  22. Ibba M, Söll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650CrossRefPubMedGoogle Scholar
  23. Jiang Y, Gao X, Liu S, Zhang Y, Liu H, Sun F, Bao L, Waldbieser G, Liu Z (2013) Whole genome comparative analysis of channel catfish (Ictalurus punctatus) with four model fish species. BMC Genomics 14:780CrossRefPubMedCentralPubMedGoogle Scholar
  24. Jimenez-Preitner M, Berney X, Uldry M, Vitali A, Cinti S, Ledford JG, Thorens B (2011) Plac8 is an inducer of C/EBPβ required for brown fat differentiation, thermoregulation, and control of body weight. Cell Metab 14:658–670CrossRefPubMedGoogle Scholar
  25. Küttner E, Moghadam H, Skúlason S, Danzmann R, Ferguson M (2011) Genetic architecture of body weight, condition factor and age of sexual maturation in Icelandic Arctic charr (Salvelinus alpinus). Mol Genet Genomics 286:67–79CrossRefPubMedGoogle Scholar
  26. Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N, Lillis S, Winder TL, Lochmüller H, Graziano C, Mitrani-Rosenbaum S, Twomey D, Sparrow JC, Beggs AH, Nowak KJ (2009) Mutations and polymorphisms of the skeletal muscle α-actin gene (ACTA1). Hum Mutat 30:1267–1277CrossRefPubMedCentralPubMedGoogle Scholar
  27. Ledford JG, Kovarova M, Koller BH (2007) Impaired host defense in mice lacking ONZIN. J Immunol 178:5132–5143CrossRefPubMedGoogle Scholar
  28. Liu S, Gao G, Palti Y, Cleveland BM, Weber GM, Rexroad CE III (2014a) RNA-Seq analysis of early hepatic response to handling and confinement stress in rainbow trout. PLoS ONE 2:e88492CrossRefGoogle Scholar
  29. Liu S, Sun L, Li Y, Sun F, Jiang Y, Zhang Y, Zhang J, Feng J, Kaltenboeck L, Kucuktas H, Liu Z (2014b) Development of the catfish 250K SNP array for genome-wide association studies. BMC Res Notes 7:135CrossRefPubMedCentralPubMedGoogle Scholar
  30. Long Y, Song G, Yan J, He X, Li Q, Cui Z (2013) Transcriptomic characterization of cold acclimation in larval zebrafish. BMC Genomics 14:612CrossRefPubMedCentralPubMedGoogle Scholar
  31. Médale F, Boujard T, Vallee F, Blanc D, Mambrini M, Roem R, Kaushik S (1998) Voluntary feed intake, nitrogen and phosphorus losses in rainbow trout (Oncorhynchus mykiss) fed increasing dietary levels of soy protein concentrate. Aquat Living Resour 11(4):239–246CrossRefGoogle Scholar
  32. Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3(3): reviews0004.1–0004.10Google Scholar
  33. Morais S, Pratoomyot J, Taggart J, Bron J, Guy D, Bell J, Tocher D (2011) Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary. BMC Genomics 12:255CrossRefPubMedCentralPubMedGoogle Scholar
  34. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRefPubMedGoogle Scholar
  35. Mundheim H, Aksnes A, Hope B (2004) Growth, feed efficiency and digestibility in salmon (Salmo salar L.) fed different dietary proportions of vegetable protein sources in combination with two fish meal qualities. Aquaculture 237:315–331CrossRefGoogle Scholar
  36. Mutch DM, Wahli W, Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J 19:1602–1616CrossRefPubMedGoogle Scholar
  37. Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci 106:15103–15110CrossRefPubMedCentralPubMedGoogle Scholar
  38. NRC (1993) In: Press NA (Ed) Nutrient requirements of fish. Washington DC, USAGoogle Scholar
  39. Perry SE, Robinson P, Melcher A, Quirke P, Bühring HJ, Cook GP, Blair GE (2007) Expression of the CUB domain containing protein 1 (CDCP1) gene in colorectal tumour cells. FEBS Lett 581:1137–1142CrossRefPubMedGoogle Scholar
  40. Pongmaneerat J, Watanabe T, Takeuchi T, Satoh T (1993) Use of different protein meals as partial or total substitution for fish meal in carp diets. Nippon Suisan Gakkaishi 59:1249–1257CrossRefGoogle Scholar
  41. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CrossRefPubMedGoogle Scholar
  42. Qian X, Ba Y, Zhuang Q, Zhong G (2014) RNA-seq technology and its application in fish transcriptomics. OMICS J Integr Biol 18(2):98–110CrossRefGoogle Scholar
  43. Rincon G, Farber EA, Farber CR, Nkrumah JD, Medrano JF (2009a) Polymorphisms in the STAT6 gene and their association with carcass traits in feedlot cattle. Anim Genet 40:878–882CrossRefPubMedGoogle Scholar
  44. Rincon G, Islas-Trejo A, Casellas J, Ronin Y, Soller M, Lipkin E, Medrano JF (2009b) Fine mapping and association analysis of a quantitative trait locus for milk production traits on Bos taurus autosome 4. J Dairy Sci 92:758–764CrossRefPubMedGoogle Scholar
  45. Rincon G, Islas-Trejo A, Castillo AR, Bauman DE, German BJ, Medrano JF (2012) Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J Dairy Res 79:66–75CrossRefPubMedGoogle Scholar
  46. Salem M, Vallejo RL, Leeds TD, Palti Y, Liu S, Sabbagh A, Rexroad CE, Yao J (2012) RNA-seq identifies SNP markers for growth traits in rainbow trout. PLoS One 7(5):e36264CrossRefPubMedCentralPubMedGoogle Scholar
  47. Skwarek-Maruszewska A, Boczkowska M, Zajac AL, Kremneva E, Svitkina T, Dominguez R, Lappalainen P (2010) Different localizations and cellular behaviors of leiomodin and tropomodulin in mature cardiomyocyte sarcomeres. Mol Biol Cell 21:3352–3361CrossRefPubMedCentralPubMedGoogle Scholar
  48. Storey J (2002) A direct approach to false discovery rates. J R Stat Soc Se B 64:479–498CrossRefGoogle Scholar
  49. Takebayashi H, Yamamoto N, Umino A, Nishikawa T (2009) Developmentally regulated and thalamus-selective induction of leiomodin2 gene by a schizophrenomimetic, phencyclidine, in the rat. Int J Neuropsychopharmacol 12(8):1111–1126CrossRefPubMedGoogle Scholar
  50. Tave D (1993) Genetics for fish hatchery managers. Van Nostrand Reinhold, New YorkGoogle Scholar
  51. Ulloa PE, Iturra P, Neira R, Araneda C (2011) Zebrafish as a model organism for nutrition and growth: towards comparative studies of nutritional genomics applied to aquacultured fishes. Rev Fish Biol Fish 21:649–666Google Scholar
  52. Ulloa PE, Peña A, Lizama CD, Araneda C, Iturra P, Neira R, Medrano JF (2013) Growth response and expression of muscle growth-related candidate genes in adult zebrafish fed plant and fishmeal protein-based diets. Zebrafish 10:1CrossRefGoogle Scholar
  53. Ulloa PE, Medrano JF, Feijoo CG (2014) Zebrafish as animal model for aquaculture nutrition research. Front Genet 5:313CrossRefPubMedCentralPubMedGoogle Scholar
  54. Vilhelmsson OT, Martin SAM, Médale F, Kaushik SJ, Houlihan DF (2004) Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). Brit J Nutr 92:71–80CrossRefPubMedGoogle Scholar
  55. Von Hertell U, Hörstgen-Schwark G, Langholz HJ, Jung B (1990) Family studies on genetic variability in growth and reproductive performance between and within test fish populations of the zebrafish, Brachydanio rerio. Aquaculture 85:307–315CrossRefGoogle Scholar
  56. Weatherley A, Gill H (1987) The biology of fish growth. Academic press, London, p 443Google Scholar
  57. Wickramasinghe S, Cánovas A, Rincón G, Medrano JF (2014) RNA-sequencing: a tool to explore new frontiers in animal genetics. Livest Prod Sci. doi: 10.1016/j.livsci.2014.06.015i
  58. Wright D, Nakamichi R, Krause J, Butlin R (2006) QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet 36:271–284CrossRefPubMedGoogle Scholar
  59. Wringe B, Devlin R, Ferguson M, Moghadam H, Sakhrani D, Danzmann R (2010) Growth-related quantitative trait loci in domestic and wild rainbow trout (Oncorhynchus mykiss). BMC Genet 11:63CrossRefPubMedCentralPubMedGoogle Scholar
  60. Xia J, Liu F, Zhu Z, Fu J, Feng J, Li J, Yue G (2010) A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics 11:135CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pilar E. Ulloa
    • 1
    • 2
    • 6
  • Gonzalo Rincón
    • 5
    • 7
  • Alma Islas-Trejo
    • 5
  • Cristian Araneda
    • 2
  • Patricia Iturra
    • 3
  • Roberto Neira
    • 2
    • 4
  • Juan F. Medrano
    • 5
  1. 1.Programa de Doctorado en Ciencias de Recursos NaturalesUniversidad de La FronteraTemucoChile
  2. 2.Departamento de Producción Animal, Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
  3. 3.Programa de Genética Humana, ICBM, Facultad de MedicinaUniversidad de ChileSantiagoChile
  4. 4.AQUAINNOVO S.A.Puerto MonttChile
  5. 5.Department of Animal ScienceUniversity of California-DavisDavisUSA
  6. 6.Departamento de Ciencias Biológicas, Facultad de Ciencias BiológicasUniversidad Andrés BelloSantiagoChile
  7. 7.Zoetis, VMRD Genetics R&DKalamazooUSA

Personalised recommendations