Skip to main content
Log in

Hyaluronate Lyase of a Deep-Sea Bacillus niacini

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A hyaluronate lyase (BniHL) was purified to homogeneity from a culture of a deep-sea Bacillus niacin strain JAM F8. The molecular mass of purified BniHL was approximately 120 kDa. The purified enzyme degraded hyaluronan as well as chondroitin sulfates A and C by a β-elimination mechanism. The optimal pH and temperature were around pH 6 and 45 °C for hyaluronan degradation. The enzyme required optimally 2, 50, and 100 mM calcium ions for degradation of hyaluronan, chondroitin sulfate C, and chondroitin sulfate A, respectively. Calcium ions slightly increased the thermal stability of the enzyme. In a genome analysis of strain JAM F8, a BniHL coding gene was identified on the bases of the molecular mass and N-terminal and internal amino acid sequences. The gene consisted of 3411 nucleotides and coded 1136 amino acids. The deduced amino acid sequence showed the highest similarity to the hyaluronate lyase of a Bacillus sp. A50 with 89 % identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bellamy WR (1990) A novel Bacillus sp. capable of degrading sulfated glycosaminoglycans. In: Horikoshi K, Grant WD (eds) Superbugs: microorganisms in extreme environments. Japan Scientific Societies Press, Tokyo, pp 143–157

    Google Scholar 

  • Cássaro CMF, Dietrich CP (1977) Distribution of sulfated mucopolysaccharides in invertebrates. J Biol Chem 252:2254–2261

    PubMed  Google Scholar 

  • Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80:1921–1943

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Shi Y, Sheng J, Wang F (2014) A novel hyaluronidase produced by Bacillus sp. A50. PLoS One 9:e94156

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamai A, Hashimoto N, Mochizuki H, Kato F, Makiguchi Y, Horie K, Suzuki S (1997) Two distinct chondroitin sulfate ABC lyases. J Biol Chem 272:9123–9130

    Article  CAS  PubMed  Google Scholar 

  • Hiyama K, Okada S (1975) Crystallization and some properties of chondroitinase from Arthrobacter aurescens. J Biol Chem 250:1824–1828

    CAS  PubMed  Google Scholar 

  • Hong SW, Kim BT, Shin HY, Kim WS, Lee KS, Kim YS, Kim DH (2002) Purification and characterization of novel chondroitin ABC and AC lyases from Bacteroides stercoris HJ-15, a human intestinal anaerobic bacterium. Eur J Biochem 269:2934–2940

    Article  CAS  PubMed  Google Scholar 

  • Ingham E, Holland KT, Gowland G, Cunliffe WJ (1979) Purification and partial characterization of hyaluronate lyase (EC 4.2.2.1) from Propionibacterium acnes. J Gen Microbiol 115:411–418

    Article  CAS  PubMed  Google Scholar 

  • Jedrzejas MJ (2000) Structural and functional comparison of polysaccharide-degrading enzymes. Crit Rev Biochem Mol Biol 35:221–251

    Article  CAS  PubMed  Google Scholar 

  • Jedrzejas MJ, Mello LV, de Groot BL, Li S (2002) Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. J Biol Chem 277:28287–28297

    Article  CAS  PubMed  Google Scholar 

  • Kitamikado M, Lee YZ (1975) Chondroitinase-producing bacteria in natural habitats. Appl Environ Microbiol 29:414–421

    CAS  Google Scholar 

  • Kurata A, Nishimura M, Kishimoto N, Kobayashi T (2014) Draft genome sequence of a deep-sea bacterium, Bacillus niacini strain JAM F8, involved in the degradation of glycosaminoglycans. Genome Announc 2:e00983–14. doi:10.1128/genomeA.00983-14

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li S, Jedrzejas MJ (2001) Hyaluronan binding and degradation by Streptococcus agalactiae hyaluronate lyase. J Biol Chem 276:41407–41416

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Hollingshead SK, Coligan JE, Egan ML, Baker JR, Pritchard DG (1994) Cloning and expression of the gene for group B streptococcal hyaluronate lyase. J Biol Chem 269:30113–30116

    CAS  PubMed  Google Scholar 

  • Linn S, Chan T, Lipeski L, Salyers AA (1983) Isolation and characterization of two chondroitin lyases from Bacteroides thetaiotaomicron. J Bateriol 156:859–866

    CAS  Google Scholar 

  • Nukui M, Taylor KB, McPherson DT, Shigenaga MK, Jedrzejas MJ (2003) The function of hydrophobic residues in the catalytic cleft of Streptococcus pneumoniae hyaluronate lyase. J Biol Chem 278:3079–3088

    Article  CAS  PubMed  Google Scholar 

  • Petit E, Delattre C, Papy-Garcia D, Michaud P (2006) Chondroitin sulfate lyases: applications in analysis and glycobiology. Adv Pharmacol 53:167–186

    Article  CAS  PubMed  Google Scholar 

  • Pritchard DG, Trent JO, Zhang P, Egan ML, Baker JR (2000) Characterization of the active site of group B streptococcal hyaluronate lyase. Proteins 40:126–134

    Article  CAS  PubMed  Google Scholar 

  • Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer AM, Helley D, Colliec-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith RF, Willett NP (1968) Rapid plate method for screening hyaluronidase and chondroitin sulfatase-producing microorganisms. Appl Environ Microbiol 16:1434–1436

    CAS  Google Scholar 

  • Tam YC, Chan ESC (1985) Purification and characterization of hyaluronidase from oral Peptostreptococcus species. Infect Immun 47:508–513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Volpi N, Maccari F (2003) Purification and characterization of hyaluronic acid from the mollusk bivalve Mytilus galloprovincialis. Biochimie 85:619–625

    Article  CAS  PubMed  Google Scholar 

  • Winter WT, Arnott S (1977) Hyaluronic acid : the role of divalent cations in conformation and packing. J Mol Biol 117:761–784

    Article  CAS  PubMed  Google Scholar 

  • Yasuda S, Sugahara K, Özbek S (2011) Evolution of glycosaminoglycans: comparative biochemical study. Commun Integr Biol 4:150–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atsushi Kurata or Tohru Kobayashi.

Additional information

Atsushi Kurata and Tohru Kobayashi contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

ESI-MS/MS spectrograms of degradation products from HA and ChS-C. A, spectrogram of degradation products from HA; B, that of authentic ∆Di-HA; C, that of degradation products from ChS-C; D that of authentic ∆Di-6S. (PPTX 134 kb)

Fig. S2

Diagram of domain structure of BniHL. Amino acid numbers are shown above diagram. Each domain is shown as follows:, CBM_4_9 superfamily domain; tandem Big_2 domains (bacterial Ig-like domain); glycosaminoglycan (GAG)-lyase superfamily domain; PL family 8N-terminal alpha helical domain; PL family 8 super- sandwich domain (PPTX 49 kb)

ESM 1

CBM_4_9 superfamily domain (GIF 905 bytes)

ESM 2

tandem Big_2 domains (bacterial Ig-like domain) (GIF 1088 bytes)

ESM 3

glycosaminoglycan (GAG)-lyase superfamily domain (GIF 905 bytes)

ESM 4

PL family 8N-terminal alpha helical domain (GIF 1.32 kb)

ESM 5

PL family 8 super- sandwich domain (GIF 997 bytes)

Table S1

(PPTX 51 kb)

Table S2

(PPTX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurata, A., Matsumoto, M., Kobayashi, T. et al. Hyaluronate Lyase of a Deep-Sea Bacillus niacini . Mar Biotechnol 17, 277–284 (2015). https://doi.org/10.1007/s10126-015-9618-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9618-z

Keywords

Navigation